[Concept,10/17] ext4l: bring in file, fsmap, and ialloc

Message ID 20251216204828.4007984-11-sjg@u-boot.org
State New
Headers
Series ext4l: Begin an implementation of ext4 based on Linux |

Commit Message

Simon Glass Dec. 16, 2025, 8:48 p.m. UTC
  From: Simon Glass <simon.glass@canonical.com>

Copy file.c, fsmap.c, fsmap.h, and ialloc.c from Linux v6.18 fs/ext4
directory.

- file: file operations (open, read, write, mmap, etc.)
- fsmap: filesystem block mapping for GETFSMAP ioctl
- ialloc: inode allocation

Co-developed-by: Claude Opus 4.5 <noreply@anthropic.com>
---

 fs/ext4l/file.c   |  995 ++++++++++++++++++++++++++++
 fs/ext4l/fsmap.c  |  792 ++++++++++++++++++++++
 fs/ext4l/fsmap.h  |   56 ++
 fs/ext4l/ialloc.c | 1621 +++++++++++++++++++++++++++++++++++++++++++++
 4 files changed, 3464 insertions(+)
 create mode 100644 fs/ext4l/file.c
 create mode 100644 fs/ext4l/fsmap.c
 create mode 100644 fs/ext4l/fsmap.h
 create mode 100644 fs/ext4l/ialloc.c
  

Patch

diff --git a/fs/ext4l/file.c b/fs/ext4l/file.c
new file mode 100644
index 00000000000..7a8b3093218
--- /dev/null
+++ b/fs/ext4l/file.c
@@ -0,0 +1,995 @@ 
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *  linux/fs/ext4/file.c
+ *
+ * Copyright (C) 1992, 1993, 1994, 1995
+ * Remy Card (card@masi.ibp.fr)
+ * Laboratoire MASI - Institut Blaise Pascal
+ * Universite Pierre et Marie Curie (Paris VI)
+ *
+ *  from
+ *
+ *  linux/fs/minix/file.c
+ *
+ *  Copyright (C) 1991, 1992  Linus Torvalds
+ *
+ *  ext4 fs regular file handling primitives
+ *
+ *  64-bit file support on 64-bit platforms by Jakub Jelinek
+ *	(jj@sunsite.ms.mff.cuni.cz)
+ */
+
+#include <linux/time.h>
+#include <linux/fs.h>
+#include <linux/iomap.h>
+#include <linux/mount.h>
+#include <linux/path.h>
+#include <linux/dax.h>
+#include <linux/quotaops.h>
+#include <linux/pagevec.h>
+#include <linux/uio.h>
+#include <linux/mman.h>
+#include <linux/backing-dev.h>
+#include "ext4.h"
+#include "ext4_jbd2.h"
+#include "xattr.h"
+#include "acl.h"
+#include "truncate.h"
+
+/*
+ * Returns %true if the given DIO request should be attempted with DIO, or
+ * %false if it should fall back to buffered I/O.
+ *
+ * DIO isn't well specified; when it's unsupported (either due to the request
+ * being misaligned, or due to the file not supporting DIO at all), filesystems
+ * either fall back to buffered I/O or return EINVAL.  For files that don't use
+ * any special features like encryption or verity, ext4 has traditionally
+ * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
+ * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
+ *
+ * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
+ * traditionally falls back to buffered I/O.
+ *
+ * This function implements the traditional ext4 behavior in all these cases.
+ */
+static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
+{
+	struct inode *inode = file_inode(iocb->ki_filp);
+	u32 dio_align = ext4_dio_alignment(inode);
+
+	if (dio_align == 0)
+		return false;
+
+	if (dio_align == 1)
+		return true;
+
+	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
+}
+
+static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
+{
+	ssize_t ret;
+	struct inode *inode = file_inode(iocb->ki_filp);
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		if (!inode_trylock_shared(inode))
+			return -EAGAIN;
+	} else {
+		inode_lock_shared(inode);
+	}
+
+	if (!ext4_should_use_dio(iocb, to)) {
+		inode_unlock_shared(inode);
+		/*
+		 * Fallback to buffered I/O if the operation being performed on
+		 * the inode is not supported by direct I/O. The IOCB_DIRECT
+		 * flag needs to be cleared here in order to ensure that the
+		 * direct I/O path within generic_file_read_iter() is not
+		 * taken.
+		 */
+		iocb->ki_flags &= ~IOCB_DIRECT;
+		return generic_file_read_iter(iocb, to);
+	}
+
+	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
+	inode_unlock_shared(inode);
+
+	file_accessed(iocb->ki_filp);
+	return ret;
+}
+
+#ifdef CONFIG_FS_DAX
+static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
+{
+	struct inode *inode = file_inode(iocb->ki_filp);
+	ssize_t ret;
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		if (!inode_trylock_shared(inode))
+			return -EAGAIN;
+	} else {
+		inode_lock_shared(inode);
+	}
+	/*
+	 * Recheck under inode lock - at this point we are sure it cannot
+	 * change anymore
+	 */
+	if (!IS_DAX(inode)) {
+		inode_unlock_shared(inode);
+		/* Fallback to buffered IO in case we cannot support DAX */
+		return generic_file_read_iter(iocb, to);
+	}
+	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
+	inode_unlock_shared(inode);
+
+	file_accessed(iocb->ki_filp);
+	return ret;
+}
+#endif
+
+static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
+{
+	struct inode *inode = file_inode(iocb->ki_filp);
+
+	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
+		return -EIO;
+
+	if (!iov_iter_count(to))
+		return 0; /* skip atime */
+
+#ifdef CONFIG_FS_DAX
+	if (IS_DAX(inode))
+		return ext4_dax_read_iter(iocb, to);
+#endif
+	if (iocb->ki_flags & IOCB_DIRECT)
+		return ext4_dio_read_iter(iocb, to);
+
+	return generic_file_read_iter(iocb, to);
+}
+
+static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
+				     struct pipe_inode_info *pipe,
+				     size_t len, unsigned int flags)
+{
+	struct inode *inode = file_inode(in);
+
+	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
+		return -EIO;
+	return filemap_splice_read(in, ppos, pipe, len, flags);
+}
+
+/*
+ * Called when an inode is released. Note that this is different
+ * from ext4_file_open: open gets called at every open, but release
+ * gets called only when /all/ the files are closed.
+ */
+static int ext4_release_file(struct inode *inode, struct file *filp)
+{
+	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
+		ext4_alloc_da_blocks(inode);
+		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
+	}
+	/* if we are the last writer on the inode, drop the block reservation */
+	if ((filp->f_mode & FMODE_WRITE) &&
+			(atomic_read(&inode->i_writecount) == 1) &&
+			!EXT4_I(inode)->i_reserved_data_blocks) {
+		down_write(&EXT4_I(inode)->i_data_sem);
+		ext4_discard_preallocations(inode);
+		up_write(&EXT4_I(inode)->i_data_sem);
+	}
+	if (is_dx(inode) && filp->private_data)
+		ext4_htree_free_dir_info(filp->private_data);
+
+	return 0;
+}
+
+/*
+ * This tests whether the IO in question is block-aligned or not.
+ * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
+ * are converted to written only after the IO is complete.  Until they are
+ * mapped, these blocks appear as holes, so dio_zero_block() will assume that
+ * it needs to zero out portions of the start and/or end block.  If 2 AIO
+ * threads are at work on the same unwritten block, they must be synchronized
+ * or one thread will zero the other's data, causing corruption.
+ */
+static bool
+ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
+{
+	struct super_block *sb = inode->i_sb;
+	unsigned long blockmask = sb->s_blocksize - 1;
+
+	if ((pos | iov_iter_alignment(from)) & blockmask)
+		return true;
+
+	return false;
+}
+
+static bool
+ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
+{
+	if (offset + len > i_size_read(inode) ||
+	    offset + len > EXT4_I(inode)->i_disksize)
+		return true;
+	return false;
+}
+
+/* Is IO overwriting allocated or initialized blocks? */
+static bool ext4_overwrite_io(struct inode *inode,
+			      loff_t pos, loff_t len, bool *unwritten)
+{
+	struct ext4_map_blocks map;
+	unsigned int blkbits = inode->i_blkbits;
+	int err, blklen;
+
+	if (pos + len > i_size_read(inode))
+		return false;
+
+	map.m_lblk = pos >> blkbits;
+	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
+	blklen = map.m_len;
+
+	err = ext4_map_blocks(NULL, inode, &map, 0);
+	if (err != blklen)
+		return false;
+	/*
+	 * 'err==len' means that all of the blocks have been preallocated,
+	 * regardless of whether they have been initialized or not. We need to
+	 * check m_flags to distinguish the unwritten extents.
+	 */
+	*unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
+	return true;
+}
+
+static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
+					 struct iov_iter *from)
+{
+	struct inode *inode = file_inode(iocb->ki_filp);
+	ssize_t ret;
+
+	if (unlikely(IS_IMMUTABLE(inode)))
+		return -EPERM;
+
+	ret = generic_write_checks(iocb, from);
+	if (ret <= 0)
+		return ret;
+
+	/*
+	 * If we have encountered a bitmap-format file, the size limit
+	 * is smaller than s_maxbytes, which is for extent-mapped files.
+	 */
+	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
+		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+
+		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
+			return -EFBIG;
+		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
+	}
+
+	return iov_iter_count(from);
+}
+
+static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
+{
+	ssize_t ret, count;
+
+	count = ext4_generic_write_checks(iocb, from);
+	if (count <= 0)
+		return count;
+
+	ret = file_modified(iocb->ki_filp);
+	if (ret)
+		return ret;
+	return count;
+}
+
+static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
+					struct iov_iter *from)
+{
+	ssize_t ret;
+	struct inode *inode = file_inode(iocb->ki_filp);
+
+	if (iocb->ki_flags & IOCB_NOWAIT)
+		return -EOPNOTSUPP;
+
+	inode_lock(inode);
+	ret = ext4_write_checks(iocb, from);
+	if (ret <= 0)
+		goto out;
+
+	ret = generic_perform_write(iocb, from);
+
+out:
+	inode_unlock(inode);
+	if (unlikely(ret <= 0))
+		return ret;
+	return generic_write_sync(iocb, ret);
+}
+
+static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
+					   ssize_t written, ssize_t count)
+{
+	handle_t *handle;
+
+	lockdep_assert_held_write(&inode->i_rwsem);
+	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
+	if (IS_ERR(handle))
+		return PTR_ERR(handle);
+
+	if (ext4_update_inode_size(inode, offset + written)) {
+		int ret = ext4_mark_inode_dirty(handle, inode);
+		if (unlikely(ret)) {
+			ext4_journal_stop(handle);
+			return ret;
+		}
+	}
+
+	if ((written == count) && inode->i_nlink)
+		ext4_orphan_del(handle, inode);
+	ext4_journal_stop(handle);
+
+	return written;
+}
+
+/*
+ * Clean up the inode after DIO or DAX extending write has completed and the
+ * inode size has been updated using ext4_handle_inode_extension().
+ */
+static void ext4_inode_extension_cleanup(struct inode *inode, bool need_trunc)
+{
+	lockdep_assert_held_write(&inode->i_rwsem);
+	if (need_trunc) {
+		ext4_truncate_failed_write(inode);
+		/*
+		 * If the truncate operation failed early, then the inode may
+		 * still be on the orphan list. In that case, we need to try
+		 * remove the inode from the in-memory linked list.
+		 */
+		if (inode->i_nlink)
+			ext4_orphan_del(NULL, inode);
+		return;
+	}
+	/*
+	 * If i_disksize got extended either due to writeback of delalloc
+	 * blocks or extending truncate while the DIO was running we could fail
+	 * to cleanup the orphan list in ext4_handle_inode_extension(). Do it
+	 * now.
+	 */
+	if (ext4_inode_orphan_tracked(inode) && inode->i_nlink) {
+		handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
+
+		if (IS_ERR(handle)) {
+			/*
+			 * The write has successfully completed. Not much to
+			 * do with the error here so just cleanup the orphan
+			 * list and hope for the best.
+			 */
+			ext4_orphan_del(NULL, inode);
+			return;
+		}
+		ext4_orphan_del(handle, inode);
+		ext4_journal_stop(handle);
+	}
+}
+
+static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
+				 int error, unsigned int flags)
+{
+	loff_t pos = iocb->ki_pos;
+	struct inode *inode = file_inode(iocb->ki_filp);
+
+
+	if (!error && size && (flags & IOMAP_DIO_UNWRITTEN) &&
+			(iocb->ki_flags & IOCB_ATOMIC))
+		error = ext4_convert_unwritten_extents_atomic(NULL, inode, pos,
+							      size);
+	else if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
+		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
+	if (error)
+		return error;
+	/*
+	 * Note that EXT4_I(inode)->i_disksize can get extended up to
+	 * inode->i_size while the I/O was running due to writeback of delalloc
+	 * blocks. But the code in ext4_iomap_alloc() is careful to use
+	 * zeroed/unwritten extents if this is possible; thus we won't leave
+	 * uninitialized blocks in a file even if we didn't succeed in writing
+	 * as much as we intended. Also we can race with truncate or write
+	 * expanding the file so we have to be a bit careful here.
+	 */
+	if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) &&
+	    pos + size <= i_size_read(inode))
+		return 0;
+	error = ext4_handle_inode_extension(inode, pos, size, size);
+	return error < 0 ? error : 0;
+}
+
+static const struct iomap_dio_ops ext4_dio_write_ops = {
+	.end_io = ext4_dio_write_end_io,
+};
+
+/*
+ * The intention here is to start with shared lock acquired then see if any
+ * condition requires an exclusive inode lock. If yes, then we restart the
+ * whole operation by releasing the shared lock and acquiring exclusive lock.
+ *
+ * - For unaligned_io we never take shared lock as it may cause data corruption
+ *   when two unaligned IO tries to modify the same block e.g. while zeroing.
+ *
+ * - For extending writes case we don't take the shared lock, since it requires
+ *   updating inode i_disksize and/or orphan handling with exclusive lock.
+ *
+ * - shared locking will only be true mostly with overwrites, including
+ *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
+ *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
+ *   also release exclusive i_rwsem lock.
+ *
+ * - Otherwise we will switch to exclusive i_rwsem lock.
+ */
+static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
+				     bool *ilock_shared, bool *extend,
+				     bool *unwritten, int *dio_flags)
+{
+	struct file *file = iocb->ki_filp;
+	struct inode *inode = file_inode(file);
+	loff_t offset;
+	size_t count;
+	ssize_t ret;
+	bool overwrite, unaligned_io;
+
+restart:
+	ret = ext4_generic_write_checks(iocb, from);
+	if (ret <= 0)
+		goto out;
+
+	offset = iocb->ki_pos;
+	count = ret;
+
+	unaligned_io = ext4_unaligned_io(inode, from, offset);
+	*extend = ext4_extending_io(inode, offset, count);
+	overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
+
+	/*
+	 * Determine whether we need to upgrade to an exclusive lock. This is
+	 * required to change security info in file_modified(), for extending
+	 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
+	 * extents (as partial block zeroing may be required).
+	 *
+	 * Note that unaligned writes are allowed under shared lock so long as
+	 * they are pure overwrites. Otherwise, concurrent unaligned writes risk
+	 * data corruption due to partial block zeroing in the dio layer, and so
+	 * the I/O must occur exclusively.
+	 */
+	if (*ilock_shared &&
+	    ((!IS_NOSEC(inode) || *extend || !overwrite ||
+	     (unaligned_io && *unwritten)))) {
+		if (iocb->ki_flags & IOCB_NOWAIT) {
+			ret = -EAGAIN;
+			goto out;
+		}
+		inode_unlock_shared(inode);
+		*ilock_shared = false;
+		inode_lock(inode);
+		goto restart;
+	}
+
+	/*
+	 * Now that locking is settled, determine dio flags and exclusivity
+	 * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
+	 * behavior already. The inode lock is already held exclusive if the
+	 * write is non-overwrite or extending, so drain all outstanding dio and
+	 * set the force wait dio flag.
+	 */
+	if (!*ilock_shared && (unaligned_io || *extend)) {
+		if (iocb->ki_flags & IOCB_NOWAIT) {
+			ret = -EAGAIN;
+			goto out;
+		}
+		if (unaligned_io && (!overwrite || *unwritten))
+			inode_dio_wait(inode);
+		*dio_flags = IOMAP_DIO_FORCE_WAIT;
+	}
+
+	ret = file_modified(file);
+	if (ret < 0)
+		goto out;
+
+	return count;
+out:
+	if (*ilock_shared)
+		inode_unlock_shared(inode);
+	else
+		inode_unlock(inode);
+	return ret;
+}
+
+static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
+{
+	ssize_t ret;
+	handle_t *handle;
+	struct inode *inode = file_inode(iocb->ki_filp);
+	loff_t offset = iocb->ki_pos;
+	size_t count = iov_iter_count(from);
+	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
+	bool extend = false, unwritten = false;
+	bool ilock_shared = true;
+	int dio_flags = 0;
+
+	/*
+	 * Quick check here without any i_rwsem lock to see if it is extending
+	 * IO. A more reliable check is done in ext4_dio_write_checks() with
+	 * proper locking in place.
+	 */
+	if (offset + count > i_size_read(inode))
+		ilock_shared = false;
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		if (ilock_shared) {
+			if (!inode_trylock_shared(inode))
+				return -EAGAIN;
+		} else {
+			if (!inode_trylock(inode))
+				return -EAGAIN;
+		}
+	} else {
+		if (ilock_shared)
+			inode_lock_shared(inode);
+		else
+			inode_lock(inode);
+	}
+
+	/* Fallback to buffered I/O if the inode does not support direct I/O. */
+	if (!ext4_should_use_dio(iocb, from)) {
+		if (ilock_shared)
+			inode_unlock_shared(inode);
+		else
+			inode_unlock(inode);
+		return ext4_buffered_write_iter(iocb, from);
+	}
+
+	/*
+	 * Prevent inline data from being created since we are going to allocate
+	 * blocks for DIO. We know the inode does not currently have inline data
+	 * because ext4_should_use_dio() checked for it, but we have to clear
+	 * the state flag before the write checks because a lock cycle could
+	 * introduce races with other writers.
+	 */
+	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
+
+	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
+				    &unwritten, &dio_flags);
+	if (ret <= 0)
+		return ret;
+
+	offset = iocb->ki_pos;
+	count = ret;
+
+	if (extend) {
+		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
+		if (IS_ERR(handle)) {
+			ret = PTR_ERR(handle);
+			goto out;
+		}
+
+		ret = ext4_orphan_add(handle, inode);
+		ext4_journal_stop(handle);
+		if (ret)
+			goto out;
+	}
+
+	if (ilock_shared && !unwritten)
+		iomap_ops = &ext4_iomap_overwrite_ops;
+	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
+			   dio_flags, NULL, 0);
+	if (ret == -ENOTBLK)
+		ret = 0;
+	if (extend) {
+		/*
+		 * We always perform extending DIO write synchronously so by
+		 * now the IO is completed and ext4_handle_inode_extension()
+		 * was called. Cleanup the inode in case of error or race with
+		 * writeback of delalloc blocks.
+		 */
+		WARN_ON_ONCE(ret == -EIOCBQUEUED);
+		ext4_inode_extension_cleanup(inode, ret < 0);
+	}
+
+out:
+	if (ilock_shared)
+		inode_unlock_shared(inode);
+	else
+		inode_unlock(inode);
+
+	if (ret >= 0 && iov_iter_count(from)) {
+		ssize_t err;
+		loff_t endbyte;
+
+		/*
+		 * There is no support for atomic writes on buffered-io yet,
+		 * we should never fallback to buffered-io for DIO atomic
+		 * writes.
+		 */
+		WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC);
+
+		offset = iocb->ki_pos;
+		err = ext4_buffered_write_iter(iocb, from);
+		if (err < 0)
+			return err;
+
+		/*
+		 * We need to ensure that the pages within the page cache for
+		 * the range covered by this I/O are written to disk and
+		 * invalidated. This is in attempt to preserve the expected
+		 * direct I/O semantics in the case we fallback to buffered I/O
+		 * to complete off the I/O request.
+		 */
+		ret += err;
+		endbyte = offset + err - 1;
+		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
+						   offset, endbyte);
+		if (!err)
+			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
+						 offset >> PAGE_SHIFT,
+						 endbyte >> PAGE_SHIFT);
+	}
+
+	return ret;
+}
+
+#ifdef CONFIG_FS_DAX
+static ssize_t
+ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
+{
+	ssize_t ret;
+	size_t count;
+	loff_t offset;
+	handle_t *handle;
+	bool extend = false;
+	struct inode *inode = file_inode(iocb->ki_filp);
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		if (!inode_trylock(inode))
+			return -EAGAIN;
+	} else {
+		inode_lock(inode);
+	}
+
+	ret = ext4_write_checks(iocb, from);
+	if (ret <= 0)
+		goto out;
+
+	offset = iocb->ki_pos;
+	count = iov_iter_count(from);
+
+	if (offset + count > EXT4_I(inode)->i_disksize) {
+		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
+		if (IS_ERR(handle)) {
+			ret = PTR_ERR(handle);
+			goto out;
+		}
+
+		ret = ext4_orphan_add(handle, inode);
+		if (ret) {
+			ext4_journal_stop(handle);
+			goto out;
+		}
+
+		extend = true;
+		ext4_journal_stop(handle);
+	}
+
+	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
+
+	if (extend) {
+		ret = ext4_handle_inode_extension(inode, offset, ret, count);
+		ext4_inode_extension_cleanup(inode, ret < (ssize_t)count);
+	}
+out:
+	inode_unlock(inode);
+	if (ret > 0)
+		ret = generic_write_sync(iocb, ret);
+	return ret;
+}
+#endif
+
+static ssize_t
+ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
+{
+	int ret;
+	struct inode *inode = file_inode(iocb->ki_filp);
+
+	ret = ext4_emergency_state(inode->i_sb);
+	if (unlikely(ret))
+		return ret;
+
+#ifdef CONFIG_FS_DAX
+	if (IS_DAX(inode))
+		return ext4_dax_write_iter(iocb, from);
+#endif
+
+	if (iocb->ki_flags & IOCB_ATOMIC) {
+		size_t len = iov_iter_count(from);
+
+		if (len < EXT4_SB(inode->i_sb)->s_awu_min ||
+		    len > EXT4_SB(inode->i_sb)->s_awu_max)
+			return -EINVAL;
+
+		ret = generic_atomic_write_valid(iocb, from);
+		if (ret)
+			return ret;
+	}
+
+	if (iocb->ki_flags & IOCB_DIRECT)
+		return ext4_dio_write_iter(iocb, from);
+	else
+		return ext4_buffered_write_iter(iocb, from);
+}
+
+#ifdef CONFIG_FS_DAX
+static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
+{
+	int error = 0;
+	vm_fault_t result;
+	int retries = 0;
+	handle_t *handle = NULL;
+	struct inode *inode = file_inode(vmf->vma->vm_file);
+	struct super_block *sb = inode->i_sb;
+
+	/*
+	 * We have to distinguish real writes from writes which will result in a
+	 * COW page; COW writes should *not* poke the journal (the file will not
+	 * be changed). Doing so would cause unintended failures when mounted
+	 * read-only.
+	 *
+	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
+	 * unset for order != 0 (i.e. only in do_cow_fault); for
+	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
+	 * we eventually come back with a COW page.
+	 */
+	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
+		(vmf->vma->vm_flags & VM_SHARED);
+	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
+	unsigned long pfn;
+
+	if (write) {
+		sb_start_pagefault(sb);
+		file_update_time(vmf->vma->vm_file);
+		filemap_invalidate_lock_shared(mapping);
+retry:
+		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
+					       EXT4_DATA_TRANS_BLOCKS(sb));
+		if (IS_ERR(handle)) {
+			filemap_invalidate_unlock_shared(mapping);
+			sb_end_pagefault(sb);
+			return VM_FAULT_SIGBUS;
+		}
+	} else {
+		filemap_invalidate_lock_shared(mapping);
+	}
+	result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
+	if (write) {
+		ext4_journal_stop(handle);
+
+		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
+		    ext4_should_retry_alloc(sb, &retries))
+			goto retry;
+		/* Handling synchronous page fault? */
+		if (result & VM_FAULT_NEEDDSYNC)
+			result = dax_finish_sync_fault(vmf, order, pfn);
+		filemap_invalidate_unlock_shared(mapping);
+		sb_end_pagefault(sb);
+	} else {
+		filemap_invalidate_unlock_shared(mapping);
+	}
+
+	return result;
+}
+
+static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
+{
+	return ext4_dax_huge_fault(vmf, 0);
+}
+
+static const struct vm_operations_struct ext4_dax_vm_ops = {
+	.fault		= ext4_dax_fault,
+	.huge_fault	= ext4_dax_huge_fault,
+	.page_mkwrite	= ext4_dax_fault,
+	.pfn_mkwrite	= ext4_dax_fault,
+};
+#else
+#define ext4_dax_vm_ops	ext4_file_vm_ops
+#endif
+
+static const struct vm_operations_struct ext4_file_vm_ops = {
+	.fault		= filemap_fault,
+	.map_pages	= filemap_map_pages,
+	.page_mkwrite   = ext4_page_mkwrite,
+};
+
+static int ext4_file_mmap_prepare(struct vm_area_desc *desc)
+{
+	int ret;
+	struct file *file = desc->file;
+	struct inode *inode = file->f_mapping->host;
+	struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
+
+	if (file->f_mode & FMODE_WRITE)
+		ret = ext4_emergency_state(inode->i_sb);
+	else
+		ret = ext4_forced_shutdown(inode->i_sb) ? -EIO : 0;
+	if (unlikely(ret))
+		return ret;
+
+	/*
+	 * We don't support synchronous mappings for non-DAX files and
+	 * for DAX files if underneath dax_device is not synchronous.
+	 */
+	if (!daxdev_mapping_supported(desc->vm_flags, file_inode(file), dax_dev))
+		return -EOPNOTSUPP;
+
+	file_accessed(file);
+	if (IS_DAX(file_inode(file))) {
+		desc->vm_ops = &ext4_dax_vm_ops;
+		desc->vm_flags |= VM_HUGEPAGE;
+	} else {
+		desc->vm_ops = &ext4_file_vm_ops;
+	}
+	return 0;
+}
+
+static int ext4_sample_last_mounted(struct super_block *sb,
+				    struct vfsmount *mnt)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	struct path path;
+	char buf[64], *cp;
+	handle_t *handle;
+	int err;
+
+	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
+		return 0;
+
+	if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
+	    !sb_start_intwrite_trylock(sb))
+		return 0;
+
+	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
+	/*
+	 * Sample where the filesystem has been mounted and
+	 * store it in the superblock for sysadmin convenience
+	 * when trying to sort through large numbers of block
+	 * devices or filesystem images.
+	 */
+	memset(buf, 0, sizeof(buf));
+	path.mnt = mnt;
+	path.dentry = mnt->mnt_root;
+	cp = d_path(&path, buf, sizeof(buf));
+	err = 0;
+	if (IS_ERR(cp))
+		goto out;
+
+	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
+	err = PTR_ERR(handle);
+	if (IS_ERR(handle))
+		goto out;
+	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
+	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
+					    EXT4_JTR_NONE);
+	if (err)
+		goto out_journal;
+	lock_buffer(sbi->s_sbh);
+	strtomem_pad(sbi->s_es->s_last_mounted, cp, 0);
+	ext4_superblock_csum_set(sb);
+	unlock_buffer(sbi->s_sbh);
+	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
+out_journal:
+	ext4_journal_stop(handle);
+out:
+	sb_end_intwrite(sb);
+	return err;
+}
+
+static int ext4_file_open(struct inode *inode, struct file *filp)
+{
+	int ret;
+
+	if (filp->f_mode & FMODE_WRITE)
+		ret = ext4_emergency_state(inode->i_sb);
+	else
+		ret = ext4_forced_shutdown(inode->i_sb) ? -EIO : 0;
+	if (unlikely(ret))
+		return ret;
+
+	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
+	if (ret)
+		return ret;
+
+	ret = fscrypt_file_open(inode, filp);
+	if (ret)
+		return ret;
+
+	ret = fsverity_file_open(inode, filp);
+	if (ret)
+		return ret;
+
+	/*
+	 * Set up the jbd2_inode if we are opening the inode for
+	 * writing and the journal is present
+	 */
+	if (filp->f_mode & FMODE_WRITE) {
+		ret = ext4_inode_attach_jinode(inode);
+		if (ret < 0)
+			return ret;
+	}
+
+	if (ext4_inode_can_atomic_write(inode))
+		filp->f_mode |= FMODE_CAN_ATOMIC_WRITE;
+
+	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
+	return dquot_file_open(inode, filp);
+}
+
+/*
+ * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
+ * by calling generic_file_llseek_size() with the appropriate maxbytes
+ * value for each.
+ */
+loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
+{
+	struct inode *inode = file->f_mapping->host;
+	loff_t maxbytes = ext4_get_maxbytes(inode);
+
+	switch (whence) {
+	default:
+		return generic_file_llseek_size(file, offset, whence,
+						maxbytes, i_size_read(inode));
+	case SEEK_HOLE:
+		inode_lock_shared(inode);
+		offset = iomap_seek_hole(inode, offset,
+					 &ext4_iomap_report_ops);
+		inode_unlock_shared(inode);
+		break;
+	case SEEK_DATA:
+		inode_lock_shared(inode);
+		offset = iomap_seek_data(inode, offset,
+					 &ext4_iomap_report_ops);
+		inode_unlock_shared(inode);
+		break;
+	}
+
+	if (offset < 0)
+		return offset;
+	return vfs_setpos(file, offset, maxbytes);
+}
+
+const struct file_operations ext4_file_operations = {
+	.llseek		= ext4_llseek,
+	.read_iter	= ext4_file_read_iter,
+	.write_iter	= ext4_file_write_iter,
+	.iopoll		= iocb_bio_iopoll,
+	.unlocked_ioctl = ext4_ioctl,
+#ifdef CONFIG_COMPAT
+	.compat_ioctl	= ext4_compat_ioctl,
+#endif
+	.mmap_prepare	= ext4_file_mmap_prepare,
+	.open		= ext4_file_open,
+	.release	= ext4_release_file,
+	.fsync		= ext4_sync_file,
+	.get_unmapped_area = thp_get_unmapped_area,
+	.splice_read	= ext4_file_splice_read,
+	.splice_write	= iter_file_splice_write,
+	.fallocate	= ext4_fallocate,
+	.fop_flags	= FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
+			  FOP_DIO_PARALLEL_WRITE |
+			  FOP_DONTCACHE,
+};
+
+const struct inode_operations ext4_file_inode_operations = {
+	.setattr	= ext4_setattr,
+	.getattr	= ext4_file_getattr,
+	.listxattr	= ext4_listxattr,
+	.get_inode_acl	= ext4_get_acl,
+	.set_acl	= ext4_set_acl,
+	.fiemap		= ext4_fiemap,
+	.fileattr_get	= ext4_fileattr_get,
+	.fileattr_set	= ext4_fileattr_set,
+};
+
diff --git a/fs/ext4l/fsmap.c b/fs/ext4l/fsmap.c
new file mode 100644
index 00000000000..22fc333244e
--- /dev/null
+++ b/fs/ext4l/fsmap.c
@@ -0,0 +1,792 @@ 
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2017 Oracle.  All Rights Reserved.
+ *
+ * Author: Darrick J. Wong <darrick.wong@oracle.com>
+ */
+#include "ext4.h"
+#include <linux/fsmap.h>
+#include "fsmap.h"
+#include "mballoc.h"
+#include <linux/sort.h>
+#include <linux/list_sort.h>
+#include <trace/events/ext4.h>
+
+/* Convert an ext4_fsmap to an fsmap. */
+void ext4_fsmap_from_internal(struct super_block *sb, struct fsmap *dest,
+			      struct ext4_fsmap *src)
+{
+	dest->fmr_device = src->fmr_device;
+	dest->fmr_flags = src->fmr_flags;
+	dest->fmr_physical = src->fmr_physical << sb->s_blocksize_bits;
+	dest->fmr_owner = src->fmr_owner;
+	dest->fmr_offset = 0;
+	dest->fmr_length = src->fmr_length << sb->s_blocksize_bits;
+	dest->fmr_reserved[0] = 0;
+	dest->fmr_reserved[1] = 0;
+	dest->fmr_reserved[2] = 0;
+}
+
+/* Convert an fsmap to an ext4_fsmap. */
+void ext4_fsmap_to_internal(struct super_block *sb, struct ext4_fsmap *dest,
+			    struct fsmap *src)
+{
+	dest->fmr_device = src->fmr_device;
+	dest->fmr_flags = src->fmr_flags;
+	dest->fmr_physical = src->fmr_physical >> sb->s_blocksize_bits;
+	dest->fmr_owner = src->fmr_owner;
+	dest->fmr_length = src->fmr_length >> sb->s_blocksize_bits;
+}
+
+/* getfsmap query state */
+struct ext4_getfsmap_info {
+	struct ext4_fsmap_head	*gfi_head;
+	ext4_fsmap_format_t	gfi_formatter;	/* formatting fn */
+	void			*gfi_format_arg;/* format buffer */
+	ext4_fsblk_t		gfi_next_fsblk;	/* next fsblock we expect */
+	u32			gfi_dev;	/* device id */
+	ext4_group_t		gfi_agno;	/* bg number, if applicable */
+	struct ext4_fsmap	gfi_low;	/* low rmap key */
+	struct ext4_fsmap	gfi_high;	/* high rmap key */
+	struct ext4_fsmap	gfi_lastfree;	/* free ext at end of last bg */
+	struct list_head	gfi_meta_list;	/* fixed metadata list */
+	bool			gfi_last;	/* last extent? */
+};
+
+/* Associate a device with a getfsmap handler. */
+struct ext4_getfsmap_dev {
+	int			(*gfd_fn)(struct super_block *sb,
+				      struct ext4_fsmap *keys,
+				      struct ext4_getfsmap_info *info);
+	u32			gfd_dev;
+};
+
+/* Compare two getfsmap device handlers. */
+static int ext4_getfsmap_dev_compare(const void *p1, const void *p2)
+{
+	const struct ext4_getfsmap_dev *d1 = p1;
+	const struct ext4_getfsmap_dev *d2 = p2;
+
+	return d1->gfd_dev - d2->gfd_dev;
+}
+
+/* Compare a record against our starting point */
+static bool ext4_getfsmap_rec_before_low_key(struct ext4_getfsmap_info *info,
+					     struct ext4_fsmap *rec)
+{
+	return rec->fmr_physical + rec->fmr_length <=
+	       info->gfi_low.fmr_physical;
+}
+
+/*
+ * Format a reverse mapping for getfsmap, having translated rm_startblock
+ * into the appropriate daddr units.
+ */
+static int ext4_getfsmap_helper(struct super_block *sb,
+				struct ext4_getfsmap_info *info,
+				struct ext4_fsmap *rec)
+{
+	struct ext4_fsmap fmr;
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	ext4_fsblk_t rec_fsblk = rec->fmr_physical;
+	ext4_group_t agno;
+	ext4_grpblk_t cno;
+	int error;
+
+	if (fatal_signal_pending(current))
+		return -EINTR;
+
+	/*
+	 * Filter out records that start before our startpoint, if the
+	 * caller requested that.
+	 */
+	if (ext4_getfsmap_rec_before_low_key(info, rec)) {
+		rec_fsblk += rec->fmr_length;
+		if (info->gfi_next_fsblk < rec_fsblk)
+			info->gfi_next_fsblk = rec_fsblk;
+		return EXT4_QUERY_RANGE_CONTINUE;
+	}
+
+	/* Are we just counting mappings? */
+	if (info->gfi_head->fmh_count == 0) {
+		if (info->gfi_head->fmh_entries == UINT_MAX)
+			return EXT4_QUERY_RANGE_ABORT;
+
+		if (rec_fsblk > info->gfi_next_fsblk)
+			info->gfi_head->fmh_entries++;
+
+		if (info->gfi_last)
+			return EXT4_QUERY_RANGE_CONTINUE;
+
+		info->gfi_head->fmh_entries++;
+
+		rec_fsblk += rec->fmr_length;
+		if (info->gfi_next_fsblk < rec_fsblk)
+			info->gfi_next_fsblk = rec_fsblk;
+		return EXT4_QUERY_RANGE_CONTINUE;
+	}
+
+	/*
+	 * If the record starts past the last physical block we saw,
+	 * then we've found a gap.  Report the gap as being owned by
+	 * whatever the caller specified is the missing owner.
+	 */
+	if (rec_fsblk > info->gfi_next_fsblk) {
+		if (info->gfi_head->fmh_entries >= info->gfi_head->fmh_count)
+			return EXT4_QUERY_RANGE_ABORT;
+
+		ext4_get_group_no_and_offset(sb, info->gfi_next_fsblk,
+				&agno, &cno);
+		trace_ext4_fsmap_mapping(sb, info->gfi_dev, agno,
+				EXT4_C2B(sbi, cno),
+				rec_fsblk - info->gfi_next_fsblk,
+				EXT4_FMR_OWN_UNKNOWN);
+
+		fmr.fmr_device = info->gfi_dev;
+		fmr.fmr_physical = info->gfi_next_fsblk;
+		fmr.fmr_owner = EXT4_FMR_OWN_UNKNOWN;
+		fmr.fmr_length = rec_fsblk - info->gfi_next_fsblk;
+		fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
+		error = info->gfi_formatter(&fmr, info->gfi_format_arg);
+		if (error)
+			return error;
+		info->gfi_head->fmh_entries++;
+	}
+
+	if (info->gfi_last)
+		goto out;
+
+	/* Fill out the extent we found */
+	if (info->gfi_head->fmh_entries >= info->gfi_head->fmh_count)
+		return EXT4_QUERY_RANGE_ABORT;
+
+	ext4_get_group_no_and_offset(sb, rec_fsblk, &agno, &cno);
+	trace_ext4_fsmap_mapping(sb, info->gfi_dev, agno, EXT4_C2B(sbi, cno),
+			rec->fmr_length, rec->fmr_owner);
+
+	fmr.fmr_device = info->gfi_dev;
+	fmr.fmr_physical = rec_fsblk;
+	fmr.fmr_owner = rec->fmr_owner;
+	fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
+	fmr.fmr_length = rec->fmr_length;
+	error = info->gfi_formatter(&fmr, info->gfi_format_arg);
+	if (error)
+		return error;
+	info->gfi_head->fmh_entries++;
+
+out:
+	rec_fsblk += rec->fmr_length;
+	if (info->gfi_next_fsblk < rec_fsblk)
+		info->gfi_next_fsblk = rec_fsblk;
+	return EXT4_QUERY_RANGE_CONTINUE;
+}
+
+static inline ext4_fsblk_t ext4_fsmap_next_pblk(struct ext4_fsmap *fmr)
+{
+	return fmr->fmr_physical + fmr->fmr_length;
+}
+
+static int ext4_getfsmap_meta_helper(struct super_block *sb,
+				     ext4_group_t agno, ext4_grpblk_t start,
+				     ext4_grpblk_t len, void *priv)
+{
+	struct ext4_getfsmap_info *info = priv;
+	struct ext4_fsmap *p;
+	struct ext4_fsmap *tmp;
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	ext4_fsblk_t fsb, fs_start, fs_end;
+	int error;
+
+	fs_start = fsb = (EXT4_C2B(sbi, start) +
+			  ext4_group_first_block_no(sb, agno));
+	fs_end = fs_start + EXT4_C2B(sbi, len);
+
+	/*
+	 * Return relevant extents from the meta_list. We emit all extents that
+	 * partially/fully overlap with the query range
+	 */
+	list_for_each_entry_safe(p, tmp, &info->gfi_meta_list, fmr_list) {
+		if (p->fmr_physical + p->fmr_length <= info->gfi_next_fsblk) {
+			list_del(&p->fmr_list);
+			kfree(p);
+			continue;
+		}
+		if (p->fmr_physical <= fs_end &&
+		    p->fmr_physical + p->fmr_length > fs_start) {
+			/* Emit the retained free extent record if present */
+			if (info->gfi_lastfree.fmr_owner) {
+				error = ext4_getfsmap_helper(sb, info,
+							&info->gfi_lastfree);
+				if (error)
+					return error;
+				info->gfi_lastfree.fmr_owner = 0;
+			}
+			error = ext4_getfsmap_helper(sb, info, p);
+			if (error)
+				return error;
+			fsb = p->fmr_physical + p->fmr_length;
+			if (info->gfi_next_fsblk < fsb)
+				info->gfi_next_fsblk = fsb;
+			list_del(&p->fmr_list);
+			kfree(p);
+			continue;
+		}
+	}
+	if (info->gfi_next_fsblk < fsb)
+		info->gfi_next_fsblk = fsb;
+
+	return 0;
+}
+
+
+/* Transform a blockgroup's free record into a fsmap */
+static int ext4_getfsmap_datadev_helper(struct super_block *sb,
+					ext4_group_t agno, ext4_grpblk_t start,
+					ext4_grpblk_t len, void *priv)
+{
+	struct ext4_fsmap irec;
+	struct ext4_getfsmap_info *info = priv;
+	struct ext4_fsmap *p;
+	struct ext4_fsmap *tmp;
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	ext4_fsblk_t fsb;
+	ext4_fsblk_t fslen;
+	int error;
+
+	fsb = (EXT4_C2B(sbi, start) + ext4_group_first_block_no(sb, agno));
+	fslen = EXT4_C2B(sbi, len);
+
+	/* If the retained free extent record is set... */
+	if (info->gfi_lastfree.fmr_owner) {
+		/* ...and abuts this one, lengthen it and return. */
+		if (ext4_fsmap_next_pblk(&info->gfi_lastfree) == fsb) {
+			info->gfi_lastfree.fmr_length += fslen;
+			return 0;
+		}
+
+		/*
+		 * There's a gap between the two free extents; emit the
+		 * retained extent prior to merging the meta_list.
+		 */
+		error = ext4_getfsmap_helper(sb, info, &info->gfi_lastfree);
+		if (error)
+			return error;
+		info->gfi_lastfree.fmr_owner = 0;
+	}
+
+	/* Merge in any relevant extents from the meta_list */
+	list_for_each_entry_safe(p, tmp, &info->gfi_meta_list, fmr_list) {
+		if (p->fmr_physical + p->fmr_length <= info->gfi_next_fsblk) {
+			list_del(&p->fmr_list);
+			kfree(p);
+		} else if (p->fmr_physical < fsb) {
+			error = ext4_getfsmap_helper(sb, info, p);
+			if (error)
+				return error;
+
+			list_del(&p->fmr_list);
+			kfree(p);
+		}
+	}
+
+	irec.fmr_device = 0;
+	irec.fmr_physical = fsb;
+	irec.fmr_length = fslen;
+	irec.fmr_owner = EXT4_FMR_OWN_FREE;
+	irec.fmr_flags = 0;
+
+	/* If this is a free extent at the end of a bg, buffer it. */
+	if (ext4_fsmap_next_pblk(&irec) ==
+			ext4_group_first_block_no(sb, agno + 1)) {
+		info->gfi_lastfree = irec;
+		return 0;
+	}
+
+	/* Otherwise, emit it */
+	return ext4_getfsmap_helper(sb, info, &irec);
+}
+
+/* Execute a getfsmap query against the log device. */
+static int ext4_getfsmap_logdev(struct super_block *sb, struct ext4_fsmap *keys,
+				struct ext4_getfsmap_info *info)
+{
+	journal_t *journal = EXT4_SB(sb)->s_journal;
+	struct ext4_fsmap irec;
+
+	/* Set up search keys */
+	info->gfi_low = keys[0];
+	info->gfi_low.fmr_length = 0;
+
+	memset(&info->gfi_high, 0xFF, sizeof(info->gfi_high));
+
+	trace_ext4_fsmap_low_key(sb, info->gfi_dev, 0,
+			info->gfi_low.fmr_physical,
+			info->gfi_low.fmr_length,
+			info->gfi_low.fmr_owner);
+
+	trace_ext4_fsmap_high_key(sb, info->gfi_dev, 0,
+			info->gfi_high.fmr_physical,
+			info->gfi_high.fmr_length,
+			info->gfi_high.fmr_owner);
+
+	if (keys[0].fmr_physical > 0)
+		return 0;
+
+	/* Fabricate an rmap entry for the external log device. */
+	irec.fmr_physical = journal->j_blk_offset;
+	irec.fmr_length = journal->j_total_len;
+	irec.fmr_owner = EXT4_FMR_OWN_LOG;
+	irec.fmr_flags = 0;
+
+	return ext4_getfsmap_helper(sb, info, &irec);
+}
+
+/* Helper to fill out an ext4_fsmap. */
+static inline int ext4_getfsmap_fill(struct list_head *meta_list,
+				     ext4_fsblk_t fsb, ext4_fsblk_t len,
+				     uint64_t owner)
+{
+	struct ext4_fsmap *fsm;
+
+	fsm = kmalloc(sizeof(*fsm), GFP_NOFS);
+	if (!fsm)
+		return -ENOMEM;
+	fsm->fmr_device = 0;
+	fsm->fmr_flags = 0;
+	fsm->fmr_physical = fsb;
+	fsm->fmr_owner = owner;
+	fsm->fmr_length = len;
+	list_add_tail(&fsm->fmr_list, meta_list);
+
+	return 0;
+}
+
+/*
+ * This function returns the number of file system metadata blocks at
+ * the beginning of a block group, including the reserved gdt blocks.
+ */
+static unsigned int ext4_getfsmap_find_sb(struct super_block *sb,
+					  ext4_group_t agno,
+					  struct list_head *meta_list)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	ext4_fsblk_t fsb = ext4_group_first_block_no(sb, agno);
+	ext4_fsblk_t len;
+	unsigned long first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
+	unsigned long metagroup = agno / EXT4_DESC_PER_BLOCK(sb);
+	int error;
+
+	/* Record the superblock. */
+	if (ext4_bg_has_super(sb, agno)) {
+		error = ext4_getfsmap_fill(meta_list, fsb, 1, EXT4_FMR_OWN_FS);
+		if (error)
+			return error;
+		fsb++;
+	}
+
+	/* Record the group descriptors. */
+	len = ext4_bg_num_gdb(sb, agno);
+	if (!len)
+		return 0;
+	error = ext4_getfsmap_fill(meta_list, fsb, len,
+				   EXT4_FMR_OWN_GDT);
+	if (error)
+		return error;
+	fsb += len;
+
+	/* Reserved GDT blocks */
+	if (!ext4_has_feature_meta_bg(sb) || metagroup < first_meta_bg) {
+		len = le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
+
+		/*
+		 * mkfs.ext4 can set s_reserved_gdt_blocks as 0 in some cases,
+		 * check for that.
+		 */
+		if (!len)
+			return 0;
+
+		error = ext4_getfsmap_fill(meta_list, fsb, len,
+					   EXT4_FMR_OWN_RESV_GDT);
+		if (error)
+			return error;
+	}
+
+	return 0;
+}
+
+/* Compare two fsmap items. */
+static int ext4_getfsmap_compare(void *priv,
+				 const struct list_head *a,
+				 const struct list_head *b)
+{
+	struct ext4_fsmap *fa;
+	struct ext4_fsmap *fb;
+
+	fa = container_of(a, struct ext4_fsmap, fmr_list);
+	fb = container_of(b, struct ext4_fsmap, fmr_list);
+	if (fa->fmr_physical < fb->fmr_physical)
+		return -1;
+	else if (fa->fmr_physical > fb->fmr_physical)
+		return 1;
+	return 0;
+}
+
+/* Merge adjacent extents of fixed metadata. */
+static void ext4_getfsmap_merge_fixed_metadata(struct list_head *meta_list)
+{
+	struct ext4_fsmap *p;
+	struct ext4_fsmap *prev = NULL;
+	struct ext4_fsmap *tmp;
+
+	list_for_each_entry_safe(p, tmp, meta_list, fmr_list) {
+		if (!prev) {
+			prev = p;
+			continue;
+		}
+
+		if (prev->fmr_owner == p->fmr_owner &&
+		    prev->fmr_physical + prev->fmr_length == p->fmr_physical) {
+			prev->fmr_length += p->fmr_length;
+			list_del(&p->fmr_list);
+			kfree(p);
+		} else
+			prev = p;
+	}
+}
+
+/* Free a list of fixed metadata. */
+static void ext4_getfsmap_free_fixed_metadata(struct list_head *meta_list)
+{
+	struct ext4_fsmap *p;
+	struct ext4_fsmap *tmp;
+
+	list_for_each_entry_safe(p, tmp, meta_list, fmr_list) {
+		list_del(&p->fmr_list);
+		kfree(p);
+	}
+}
+
+/* Find all the fixed metadata in the filesystem. */
+static int ext4_getfsmap_find_fixed_metadata(struct super_block *sb,
+					     struct list_head *meta_list)
+{
+	struct ext4_group_desc *gdp;
+	ext4_group_t agno;
+	int error;
+
+	INIT_LIST_HEAD(meta_list);
+
+	/* Collect everything. */
+	for (agno = 0; agno < EXT4_SB(sb)->s_groups_count; agno++) {
+		gdp = ext4_get_group_desc(sb, agno, NULL);
+		if (!gdp) {
+			error = -EFSCORRUPTED;
+			goto err;
+		}
+
+		/* Superblock & GDT */
+		error = ext4_getfsmap_find_sb(sb, agno, meta_list);
+		if (error)
+			goto err;
+
+		/* Block bitmap */
+		error = ext4_getfsmap_fill(meta_list,
+					   ext4_block_bitmap(sb, gdp), 1,
+					   EXT4_FMR_OWN_BLKBM);
+		if (error)
+			goto err;
+
+		/* Inode bitmap */
+		error = ext4_getfsmap_fill(meta_list,
+					   ext4_inode_bitmap(sb, gdp), 1,
+					   EXT4_FMR_OWN_INOBM);
+		if (error)
+			goto err;
+
+		/* Inodes */
+		error = ext4_getfsmap_fill(meta_list,
+					   ext4_inode_table(sb, gdp),
+					   EXT4_SB(sb)->s_itb_per_group,
+					   EXT4_FMR_OWN_INODES);
+		if (error)
+			goto err;
+	}
+
+	/* Sort the list */
+	list_sort(NULL, meta_list, ext4_getfsmap_compare);
+
+	/* Merge adjacent extents */
+	ext4_getfsmap_merge_fixed_metadata(meta_list);
+
+	return 0;
+err:
+	ext4_getfsmap_free_fixed_metadata(meta_list);
+	return error;
+}
+
+/* Execute a getfsmap query against the buddy bitmaps */
+static int ext4_getfsmap_datadev(struct super_block *sb,
+				 struct ext4_fsmap *keys,
+				 struct ext4_getfsmap_info *info)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	ext4_fsblk_t start_fsb;
+	ext4_fsblk_t end_fsb;
+	ext4_fsblk_t bofs;
+	ext4_fsblk_t eofs;
+	ext4_group_t start_ag;
+	ext4_group_t end_ag;
+	ext4_grpblk_t first_cluster;
+	ext4_grpblk_t last_cluster;
+	struct ext4_fsmap irec;
+	int error = 0;
+
+	bofs = le32_to_cpu(sbi->s_es->s_first_data_block);
+	eofs = ext4_blocks_count(sbi->s_es);
+	if (keys[0].fmr_physical >= eofs)
+		return 0;
+	else if (keys[0].fmr_physical < bofs)
+		keys[0].fmr_physical = bofs;
+	if (keys[1].fmr_physical >= eofs)
+		keys[1].fmr_physical = eofs - 1;
+	if (keys[1].fmr_physical < keys[0].fmr_physical)
+		return 0;
+	start_fsb = keys[0].fmr_physical;
+	end_fsb = keys[1].fmr_physical;
+
+	/* Determine first and last group to examine based on start and end */
+	ext4_get_group_no_and_offset(sb, start_fsb, &start_ag, &first_cluster);
+	ext4_get_group_no_and_offset(sb, end_fsb, &end_ag, &last_cluster);
+
+	/*
+	 * Convert the fsmap low/high keys to bg based keys.  Initialize
+	 * low to the fsmap low key and max out the high key to the end
+	 * of the bg.
+	 */
+	info->gfi_low = keys[0];
+	info->gfi_low.fmr_physical = EXT4_C2B(sbi, first_cluster);
+	info->gfi_low.fmr_length = 0;
+
+	memset(&info->gfi_high, 0xFF, sizeof(info->gfi_high));
+
+	/* Assemble a list of all the fixed-location metadata. */
+	error = ext4_getfsmap_find_fixed_metadata(sb, &info->gfi_meta_list);
+	if (error)
+		goto err;
+
+	/* Query each bg */
+	for (info->gfi_agno = start_ag;
+	     info->gfi_agno <= end_ag;
+	     info->gfi_agno++) {
+		/*
+		 * Set the bg high key from the fsmap high key if this
+		 * is the last bg that we're querying.
+		 */
+		if (info->gfi_agno == end_ag) {
+			info->gfi_high = keys[1];
+			info->gfi_high.fmr_physical = EXT4_C2B(sbi,
+					last_cluster);
+			info->gfi_high.fmr_length = 0;
+		}
+
+		trace_ext4_fsmap_low_key(sb, info->gfi_dev, info->gfi_agno,
+				info->gfi_low.fmr_physical,
+				info->gfi_low.fmr_length,
+				info->gfi_low.fmr_owner);
+
+		trace_ext4_fsmap_high_key(sb, info->gfi_dev, info->gfi_agno,
+				info->gfi_high.fmr_physical,
+				info->gfi_high.fmr_length,
+				info->gfi_high.fmr_owner);
+
+		error = ext4_mballoc_query_range(sb, info->gfi_agno,
+				EXT4_B2C(sbi, info->gfi_low.fmr_physical),
+				EXT4_B2C(sbi, info->gfi_high.fmr_physical),
+				ext4_getfsmap_meta_helper,
+				ext4_getfsmap_datadev_helper, info);
+		if (error)
+			goto err;
+
+		/*
+		 * Set the bg low key to the start of the bg prior to
+		 * moving on to the next bg.
+		 */
+		if (info->gfi_agno == start_ag)
+			memset(&info->gfi_low, 0, sizeof(info->gfi_low));
+	}
+
+	/* Do we have a retained free extent? */
+	if (info->gfi_lastfree.fmr_owner) {
+		error = ext4_getfsmap_helper(sb, info, &info->gfi_lastfree);
+		if (error)
+			goto err;
+	}
+
+	/*
+	 * The dummy record below will cause ext4_getfsmap_helper() to report
+	 * any allocated blocks at the end of the range.
+	 */
+	irec.fmr_device = 0;
+	irec.fmr_physical = end_fsb + 1;
+	irec.fmr_length = 0;
+	irec.fmr_owner = EXT4_FMR_OWN_FREE;
+	irec.fmr_flags = 0;
+
+	info->gfi_last = true;
+	error = ext4_getfsmap_helper(sb, info, &irec);
+	if (error)
+		goto err;
+
+err:
+	ext4_getfsmap_free_fixed_metadata(&info->gfi_meta_list);
+	return error;
+}
+
+/* Do we recognize the device? */
+static bool ext4_getfsmap_is_valid_device(struct super_block *sb,
+					  struct ext4_fsmap *fm)
+{
+	if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
+	    fm->fmr_device == new_encode_dev(sb->s_bdev->bd_dev))
+		return true;
+	if (EXT4_SB(sb)->s_journal_bdev_file &&
+	    fm->fmr_device ==
+	    new_encode_dev(file_bdev(EXT4_SB(sb)->s_journal_bdev_file)->bd_dev))
+		return true;
+	return false;
+}
+
+/* Ensure that the low key is less than the high key. */
+static bool ext4_getfsmap_check_keys(struct ext4_fsmap *low_key,
+				     struct ext4_fsmap *high_key)
+{
+	if (low_key->fmr_device > high_key->fmr_device)
+		return false;
+	if (low_key->fmr_device < high_key->fmr_device)
+		return true;
+
+	if (low_key->fmr_physical > high_key->fmr_physical)
+		return false;
+	if (low_key->fmr_physical < high_key->fmr_physical)
+		return true;
+
+	if (low_key->fmr_owner > high_key->fmr_owner)
+		return false;
+	if (low_key->fmr_owner < high_key->fmr_owner)
+		return true;
+
+	return false;
+}
+
+#define EXT4_GETFSMAP_DEVS	2
+/*
+ * Get filesystem's extents as described in head, and format for
+ * output.  Calls formatter to fill the user's buffer until all
+ * extents are mapped, until the passed-in head->fmh_count slots have
+ * been filled, or until the formatter short-circuits the loop, if it
+ * is tracking filled-in extents on its own.
+ *
+ * Key to Confusion
+ * ----------------
+ * There are multiple levels of keys and counters at work here:
+ * _fsmap_head.fmh_keys		-- low and high fsmap keys passed in;
+ * 				   these reflect fs-wide block addrs.
+ * dkeys			-- fmh_keys used to query each device;
+ * 				   these are fmh_keys but w/ the low key
+ * 				   bumped up by fmr_length.
+ * _getfsmap_info.gfi_next_fsblk-- next fs block we expect to see; this
+ *				   is how we detect gaps in the fsmap
+ *				   records and report them.
+ * _getfsmap_info.gfi_low/high	-- per-bg low/high keys computed from
+ * 				   dkeys; used to query the free space.
+ */
+int ext4_getfsmap(struct super_block *sb, struct ext4_fsmap_head *head,
+		  ext4_fsmap_format_t formatter, void *arg)
+{
+	struct ext4_fsmap dkeys[2];	/* per-dev keys */
+	struct ext4_getfsmap_dev handlers[EXT4_GETFSMAP_DEVS];
+	struct ext4_getfsmap_info info = { NULL };
+	int i;
+	int error = 0;
+
+	if (head->fmh_iflags & ~FMH_IF_VALID)
+		return -EINVAL;
+	if (!ext4_getfsmap_is_valid_device(sb, &head->fmh_keys[0]) ||
+	    !ext4_getfsmap_is_valid_device(sb, &head->fmh_keys[1]))
+		return -EINVAL;
+
+	head->fmh_entries = 0;
+
+	/* Set up our device handlers. */
+	memset(handlers, 0, sizeof(handlers));
+	handlers[0].gfd_dev = new_encode_dev(sb->s_bdev->bd_dev);
+	handlers[0].gfd_fn = ext4_getfsmap_datadev;
+	if (EXT4_SB(sb)->s_journal_bdev_file) {
+		handlers[1].gfd_dev = new_encode_dev(
+			file_bdev(EXT4_SB(sb)->s_journal_bdev_file)->bd_dev);
+		handlers[1].gfd_fn = ext4_getfsmap_logdev;
+	}
+
+	sort(handlers, EXT4_GETFSMAP_DEVS, sizeof(struct ext4_getfsmap_dev),
+			ext4_getfsmap_dev_compare, NULL);
+
+	/*
+	 * To continue where we left off, we allow userspace to use the
+	 * last mapping from a previous call as the low key of the next.
+	 * This is identified by a non-zero length in the low key. We
+	 * have to increment the low key in this scenario to ensure we
+	 * don't return the same mapping again, and instead return the
+	 * very next mapping.
+	 *
+	 * Bump the physical offset as there can be no other mapping for
+	 * the same physical block range.
+	 */
+	dkeys[0] = head->fmh_keys[0];
+	dkeys[0].fmr_physical += dkeys[0].fmr_length;
+	dkeys[0].fmr_owner = 0;
+	dkeys[0].fmr_length = 0;
+	memset(&dkeys[1], 0xFF, sizeof(struct ext4_fsmap));
+
+	if (!ext4_getfsmap_check_keys(dkeys, &head->fmh_keys[1]))
+		return -EINVAL;
+
+	info.gfi_next_fsblk = head->fmh_keys[0].fmr_physical +
+			  head->fmh_keys[0].fmr_length;
+	info.gfi_formatter = formatter;
+	info.gfi_format_arg = arg;
+	info.gfi_head = head;
+
+	/* For each device we support... */
+	for (i = 0; i < EXT4_GETFSMAP_DEVS; i++) {
+		/* Is this device within the range the user asked for? */
+		if (!handlers[i].gfd_fn)
+			continue;
+		if (head->fmh_keys[0].fmr_device > handlers[i].gfd_dev)
+			continue;
+		if (head->fmh_keys[1].fmr_device < handlers[i].gfd_dev)
+			break;
+
+		/*
+		 * If this device number matches the high key, we have
+		 * to pass the high key to the handler to limit the
+		 * query results.  If the device number exceeds the
+		 * low key, zero out the low key so that we get
+		 * everything from the beginning.
+		 */
+		if (handlers[i].gfd_dev == head->fmh_keys[1].fmr_device)
+			dkeys[1] = head->fmh_keys[1];
+		if (handlers[i].gfd_dev > head->fmh_keys[0].fmr_device)
+			memset(&dkeys[0], 0, sizeof(struct ext4_fsmap));
+
+		info.gfi_dev = handlers[i].gfd_dev;
+		info.gfi_last = false;
+		info.gfi_agno = -1;
+		error = handlers[i].gfd_fn(sb, dkeys, &info);
+		if (error)
+			break;
+		info.gfi_next_fsblk = 0;
+	}
+
+	head->fmh_oflags = FMH_OF_DEV_T;
+	return error;
+}
diff --git a/fs/ext4l/fsmap.h b/fs/ext4l/fsmap.h
new file mode 100644
index 00000000000..ac642be2302
--- /dev/null
+++ b/fs/ext4l/fsmap.h
@@ -0,0 +1,56 @@ 
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2017 Oracle.  All Rights Reserved.
+ *
+ * Author: Darrick J. Wong <darrick.wong@oracle.com>
+ */
+#ifndef __EXT4_FSMAP_H__
+#define	__EXT4_FSMAP_H__
+
+struct fsmap;
+
+/* internal fsmap representation */
+struct ext4_fsmap {
+	struct list_head	fmr_list;
+	dev_t		fmr_device;	/* device id */
+	uint32_t	fmr_flags;	/* mapping flags */
+	uint64_t	fmr_physical;	/* device offset of segment */
+	uint64_t	fmr_owner;	/* owner id */
+	uint64_t	fmr_length;	/* length of segment, blocks */
+};
+
+struct ext4_fsmap_head {
+	uint32_t	fmh_iflags;	/* control flags */
+	uint32_t	fmh_oflags;	/* output flags */
+	unsigned int	fmh_count;	/* # of entries in array incl. input */
+	unsigned int	fmh_entries;	/* # of entries filled in (output). */
+
+	struct ext4_fsmap fmh_keys[2];	/* low and high keys */
+};
+
+void ext4_fsmap_from_internal(struct super_block *sb, struct fsmap *dest,
+		struct ext4_fsmap *src);
+void ext4_fsmap_to_internal(struct super_block *sb, struct ext4_fsmap *dest,
+		struct fsmap *src);
+
+/* fsmap to userspace formatter - copy to user & advance pointer */
+typedef int (*ext4_fsmap_format_t)(struct ext4_fsmap *, void *);
+
+int ext4_getfsmap(struct super_block *sb, struct ext4_fsmap_head *head,
+		ext4_fsmap_format_t formatter, void *arg);
+
+#define EXT4_QUERY_RANGE_ABORT		1
+#define EXT4_QUERY_RANGE_CONTINUE	0
+
+/*	fmr_owner special values for FS_IOC_GETFSMAP; some share w/ XFS */
+#define EXT4_FMR_OWN_FREE	FMR_OWN_FREE      /* free space */
+#define EXT4_FMR_OWN_UNKNOWN	FMR_OWN_UNKNOWN   /* unknown owner */
+#define EXT4_FMR_OWN_FS		FMR_OWNER('X', 1) /* static fs metadata */
+#define EXT4_FMR_OWN_LOG	FMR_OWNER('X', 2) /* journalling log */
+#define EXT4_FMR_OWN_INODES	FMR_OWNER('X', 5) /* inodes */
+#define EXT4_FMR_OWN_GDT	FMR_OWNER('f', 1) /* group descriptors */
+#define EXT4_FMR_OWN_RESV_GDT	FMR_OWNER('f', 2) /* reserved gdt blocks */
+#define EXT4_FMR_OWN_BLKBM	FMR_OWNER('f', 3) /* block bitmap */
+#define EXT4_FMR_OWN_INOBM	FMR_OWNER('f', 4) /* inode bitmap */
+
+#endif /* __EXT4_FSMAP_H__ */
diff --git a/fs/ext4l/ialloc.c b/fs/ext4l/ialloc.c
new file mode 100644
index 00000000000..ba4fd9aba1c
--- /dev/null
+++ b/fs/ext4l/ialloc.c
@@ -0,0 +1,1621 @@ 
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *  linux/fs/ext4/ialloc.c
+ *
+ * Copyright (C) 1992, 1993, 1994, 1995
+ * Remy Card (card@masi.ibp.fr)
+ * Laboratoire MASI - Institut Blaise Pascal
+ * Universite Pierre et Marie Curie (Paris VI)
+ *
+ *  BSD ufs-inspired inode and directory allocation by
+ *  Stephen Tweedie (sct@redhat.com), 1993
+ *  Big-endian to little-endian byte-swapping/bitmaps by
+ *        David S. Miller (davem@caip.rutgers.edu), 1995
+ */
+
+#include <linux/time.h>
+#include <linux/fs.h>
+#include <linux/stat.h>
+#include <linux/string.h>
+#include <linux/quotaops.h>
+#include <linux/buffer_head.h>
+#include <linux/random.h>
+#include <linux/bitops.h>
+#include <linux/blkdev.h>
+#include <linux/cred.h>
+
+#include <asm/byteorder.h>
+
+#include "ext4.h"
+#include "ext4_jbd2.h"
+#include "xattr.h"
+#include "acl.h"
+
+#include <trace/events/ext4.h>
+
+/*
+ * ialloc.c contains the inodes allocation and deallocation routines
+ */
+
+/*
+ * The free inodes are managed by bitmaps.  A file system contains several
+ * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
+ * block for inodes, N blocks for the inode table and data blocks.
+ *
+ * The file system contains group descriptors which are located after the
+ * super block.  Each descriptor contains the number of the bitmap block and
+ * the free blocks count in the block.
+ */
+
+/*
+ * To avoid calling the atomic setbit hundreds or thousands of times, we only
+ * need to use it within a single byte (to ensure we get endianness right).
+ * We can use memset for the rest of the bitmap as there are no other users.
+ */
+void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
+{
+	int i;
+
+	if (start_bit >= end_bit)
+		return;
+
+	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
+	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
+		ext4_set_bit(i, bitmap);
+	if (i < end_bit)
+		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
+}
+
+void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
+{
+	if (uptodate) {
+		set_buffer_uptodate(bh);
+		set_bitmap_uptodate(bh);
+	}
+	unlock_buffer(bh);
+	put_bh(bh);
+}
+
+static int ext4_validate_inode_bitmap(struct super_block *sb,
+				      struct ext4_group_desc *desc,
+				      ext4_group_t block_group,
+				      struct buffer_head *bh)
+{
+	ext4_fsblk_t	blk;
+	struct ext4_group_info *grp;
+
+	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
+		return 0;
+
+	if (buffer_verified(bh))
+		return 0;
+
+	grp = ext4_get_group_info(sb, block_group);
+	if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
+		return -EFSCORRUPTED;
+
+	ext4_lock_group(sb, block_group);
+	if (buffer_verified(bh))
+		goto verified;
+	blk = ext4_inode_bitmap(sb, desc);
+	if (!ext4_inode_bitmap_csum_verify(sb, desc, bh) ||
+	    ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
+		ext4_unlock_group(sb, block_group);
+		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
+			   "inode_bitmap = %llu", block_group, blk);
+		ext4_mark_group_bitmap_corrupted(sb, block_group,
+					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
+		return -EFSBADCRC;
+	}
+	set_buffer_verified(bh);
+verified:
+	ext4_unlock_group(sb, block_group);
+	return 0;
+}
+
+/*
+ * Read the inode allocation bitmap for a given block_group, reading
+ * into the specified slot in the superblock's bitmap cache.
+ *
+ * Return buffer_head of bitmap on success, or an ERR_PTR on error.
+ */
+static struct buffer_head *
+ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
+{
+	struct ext4_group_desc *desc;
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	struct buffer_head *bh = NULL;
+	ext4_fsblk_t bitmap_blk;
+	int err;
+
+	desc = ext4_get_group_desc(sb, block_group, NULL);
+	if (!desc)
+		return ERR_PTR(-EFSCORRUPTED);
+
+	bitmap_blk = ext4_inode_bitmap(sb, desc);
+	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
+	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
+		ext4_error(sb, "Invalid inode bitmap blk %llu in "
+			   "block_group %u", bitmap_blk, block_group);
+		ext4_mark_group_bitmap_corrupted(sb, block_group,
+					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
+		return ERR_PTR(-EFSCORRUPTED);
+	}
+	bh = sb_getblk(sb, bitmap_blk);
+	if (unlikely(!bh)) {
+		ext4_warning(sb, "Cannot read inode bitmap - "
+			     "block_group = %u, inode_bitmap = %llu",
+			     block_group, bitmap_blk);
+		return ERR_PTR(-ENOMEM);
+	}
+	if (bitmap_uptodate(bh))
+		goto verify;
+
+	lock_buffer(bh);
+	if (bitmap_uptodate(bh)) {
+		unlock_buffer(bh);
+		goto verify;
+	}
+
+	ext4_lock_group(sb, block_group);
+	if (ext4_has_group_desc_csum(sb) &&
+	    (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
+		if (block_group == 0) {
+			ext4_unlock_group(sb, block_group);
+			unlock_buffer(bh);
+			ext4_error(sb, "Inode bitmap for bg 0 marked "
+				   "uninitialized");
+			err = -EFSCORRUPTED;
+			goto out;
+		}
+		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
+		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
+				     sb->s_blocksize * 8, bh->b_data);
+		set_bitmap_uptodate(bh);
+		set_buffer_uptodate(bh);
+		set_buffer_verified(bh);
+		ext4_unlock_group(sb, block_group);
+		unlock_buffer(bh);
+		return bh;
+	}
+	ext4_unlock_group(sb, block_group);
+
+	if (buffer_uptodate(bh)) {
+		/*
+		 * if not uninit if bh is uptodate,
+		 * bitmap is also uptodate
+		 */
+		set_bitmap_uptodate(bh);
+		unlock_buffer(bh);
+		goto verify;
+	}
+	/*
+	 * submit the buffer_head for reading
+	 */
+	trace_ext4_load_inode_bitmap(sb, block_group);
+	ext4_read_bh(bh, REQ_META | REQ_PRIO,
+		     ext4_end_bitmap_read,
+		     ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_EIO));
+	if (!buffer_uptodate(bh)) {
+		put_bh(bh);
+		ext4_error_err(sb, EIO, "Cannot read inode bitmap - "
+			       "block_group = %u, inode_bitmap = %llu",
+			       block_group, bitmap_blk);
+		ext4_mark_group_bitmap_corrupted(sb, block_group,
+				EXT4_GROUP_INFO_IBITMAP_CORRUPT);
+		return ERR_PTR(-EIO);
+	}
+
+verify:
+	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
+	if (err)
+		goto out;
+	return bh;
+out:
+	put_bh(bh);
+	return ERR_PTR(err);
+}
+
+/*
+ * NOTE! When we get the inode, we're the only people
+ * that have access to it, and as such there are no
+ * race conditions we have to worry about. The inode
+ * is not on the hash-lists, and it cannot be reached
+ * through the filesystem because the directory entry
+ * has been deleted earlier.
+ *
+ * HOWEVER: we must make sure that we get no aliases,
+ * which means that we have to call "clear_inode()"
+ * _before_ we mark the inode not in use in the inode
+ * bitmaps. Otherwise a newly created file might use
+ * the same inode number (not actually the same pointer
+ * though), and then we'd have two inodes sharing the
+ * same inode number and space on the harddisk.
+ */
+void ext4_free_inode(handle_t *handle, struct inode *inode)
+{
+	struct super_block *sb = inode->i_sb;
+	int is_directory;
+	unsigned long ino;
+	struct buffer_head *bitmap_bh = NULL;
+	struct buffer_head *bh2;
+	ext4_group_t block_group;
+	unsigned long bit;
+	struct ext4_group_desc *gdp;
+	struct ext4_super_block *es;
+	struct ext4_sb_info *sbi;
+	int fatal = 0, err, count, cleared;
+	struct ext4_group_info *grp;
+
+	if (!sb) {
+		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
+		       "nonexistent device\n", __func__, __LINE__);
+		return;
+	}
+	if (icount_read(inode) > 1) {
+		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
+			 __func__, __LINE__, inode->i_ino,
+			 icount_read(inode));
+		return;
+	}
+	if (inode->i_nlink) {
+		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
+			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
+		return;
+	}
+	sbi = EXT4_SB(sb);
+
+	ino = inode->i_ino;
+	ext4_debug("freeing inode %lu\n", ino);
+	trace_ext4_free_inode(inode);
+
+	dquot_initialize(inode);
+	dquot_free_inode(inode);
+
+	is_directory = S_ISDIR(inode->i_mode);
+
+	/* Do this BEFORE marking the inode not in use or returning an error */
+	ext4_clear_inode(inode);
+
+	es = sbi->s_es;
+	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
+		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
+		goto error_return;
+	}
+	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
+	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
+	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
+	/* Don't bother if the inode bitmap is corrupt. */
+	if (IS_ERR(bitmap_bh)) {
+		fatal = PTR_ERR(bitmap_bh);
+		bitmap_bh = NULL;
+		goto error_return;
+	}
+	if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
+		grp = ext4_get_group_info(sb, block_group);
+		if (!grp || unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
+			fatal = -EFSCORRUPTED;
+			goto error_return;
+		}
+	}
+
+	BUFFER_TRACE(bitmap_bh, "get_write_access");
+	fatal = ext4_journal_get_write_access(handle, sb, bitmap_bh,
+					      EXT4_JTR_NONE);
+	if (fatal)
+		goto error_return;
+
+	fatal = -ESRCH;
+	gdp = ext4_get_group_desc(sb, block_group, &bh2);
+	if (gdp) {
+		BUFFER_TRACE(bh2, "get_write_access");
+		fatal = ext4_journal_get_write_access(handle, sb, bh2,
+						      EXT4_JTR_NONE);
+	}
+	ext4_lock_group(sb, block_group);
+	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
+	if (fatal || !cleared) {
+		ext4_unlock_group(sb, block_group);
+		goto out;
+	}
+
+	count = ext4_free_inodes_count(sb, gdp) + 1;
+	ext4_free_inodes_set(sb, gdp, count);
+	if (is_directory) {
+		count = ext4_used_dirs_count(sb, gdp) - 1;
+		ext4_used_dirs_set(sb, gdp, count);
+		if (percpu_counter_initialized(&sbi->s_dirs_counter))
+			percpu_counter_dec(&sbi->s_dirs_counter);
+	}
+	ext4_inode_bitmap_csum_set(sb, gdp, bitmap_bh);
+	ext4_group_desc_csum_set(sb, block_group, gdp);
+	ext4_unlock_group(sb, block_group);
+
+	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
+		percpu_counter_inc(&sbi->s_freeinodes_counter);
+	if (sbi->s_log_groups_per_flex) {
+		struct flex_groups *fg;
+
+		fg = sbi_array_rcu_deref(sbi, s_flex_groups,
+					 ext4_flex_group(sbi, block_group));
+		atomic_inc(&fg->free_inodes);
+		if (is_directory)
+			atomic_dec(&fg->used_dirs);
+	}
+	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
+	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
+out:
+	if (cleared) {
+		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
+		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
+		if (!fatal)
+			fatal = err;
+	} else {
+		ext4_error(sb, "bit already cleared for inode %lu", ino);
+		ext4_mark_group_bitmap_corrupted(sb, block_group,
+					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
+	}
+
+error_return:
+	brelse(bitmap_bh);
+	ext4_std_error(sb, fatal);
+}
+
+struct orlov_stats {
+	__u64 free_clusters;
+	__u32 free_inodes;
+	__u32 used_dirs;
+};
+
+/*
+ * Helper function for Orlov's allocator; returns critical information
+ * for a particular block group or flex_bg.  If flex_size is 1, then g
+ * is a block group number; otherwise it is flex_bg number.
+ */
+static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
+			    int flex_size, struct orlov_stats *stats)
+{
+	struct ext4_group_desc *desc;
+
+	if (flex_size > 1) {
+		struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
+							     s_flex_groups, g);
+		stats->free_inodes = atomic_read(&fg->free_inodes);
+		stats->free_clusters = atomic64_read(&fg->free_clusters);
+		stats->used_dirs = atomic_read(&fg->used_dirs);
+		return;
+	}
+
+	desc = ext4_get_group_desc(sb, g, NULL);
+	if (desc) {
+		stats->free_inodes = ext4_free_inodes_count(sb, desc);
+		stats->free_clusters = ext4_free_group_clusters(sb, desc);
+		stats->used_dirs = ext4_used_dirs_count(sb, desc);
+	} else {
+		stats->free_inodes = 0;
+		stats->free_clusters = 0;
+		stats->used_dirs = 0;
+	}
+}
+
+/*
+ * Orlov's allocator for directories.
+ *
+ * We always try to spread first-level directories.
+ *
+ * If there are blockgroups with both free inodes and free clusters counts
+ * not worse than average we return one with smallest directory count.
+ * Otherwise we simply return a random group.
+ *
+ * For the rest rules look so:
+ *
+ * It's OK to put directory into a group unless
+ * it has too many directories already (max_dirs) or
+ * it has too few free inodes left (min_inodes) or
+ * it has too few free clusters left (min_clusters) or
+ * Parent's group is preferred, if it doesn't satisfy these
+ * conditions we search cyclically through the rest. If none
+ * of the groups look good we just look for a group with more
+ * free inodes than average (starting at parent's group).
+ */
+
+static int find_group_orlov(struct super_block *sb, struct inode *parent,
+			    ext4_group_t *group, umode_t mode,
+			    const struct qstr *qstr)
+{
+	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
+	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
+	unsigned int freei, avefreei, grp_free;
+	ext4_fsblk_t freec, avefreec;
+	unsigned int ndirs;
+	int max_dirs, min_inodes;
+	ext4_grpblk_t min_clusters;
+	ext4_group_t i, grp, g, ngroups;
+	struct ext4_group_desc *desc;
+	struct orlov_stats stats;
+	int flex_size = ext4_flex_bg_size(sbi);
+	struct dx_hash_info hinfo;
+
+	ngroups = real_ngroups;
+	if (flex_size > 1) {
+		ngroups = (real_ngroups + flex_size - 1) >>
+			sbi->s_log_groups_per_flex;
+		parent_group >>= sbi->s_log_groups_per_flex;
+	}
+
+	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
+	avefreei = freei / ngroups;
+	freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter);
+	avefreec = freec;
+	do_div(avefreec, ngroups);
+	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
+
+	if (S_ISDIR(mode) &&
+	    ((parent == d_inode(sb->s_root)) ||
+	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
+		int best_ndir = inodes_per_group;
+		int ret = -1;
+
+		if (qstr) {
+			hinfo.hash_version = DX_HASH_HALF_MD4;
+			hinfo.seed = sbi->s_hash_seed;
+			ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
+			parent_group = hinfo.hash % ngroups;
+		} else
+			parent_group = get_random_u32_below(ngroups);
+		for (i = 0; i < ngroups; i++) {
+			g = (parent_group + i) % ngroups;
+			get_orlov_stats(sb, g, flex_size, &stats);
+			if (!stats.free_inodes)
+				continue;
+			if (stats.used_dirs >= best_ndir)
+				continue;
+			if (stats.free_inodes < avefreei)
+				continue;
+			if (stats.free_clusters < avefreec)
+				continue;
+			grp = g;
+			ret = 0;
+			best_ndir = stats.used_dirs;
+		}
+		if (ret)
+			goto fallback;
+	found_flex_bg:
+		if (flex_size == 1) {
+			*group = grp;
+			return 0;
+		}
+
+		/*
+		 * We pack inodes at the beginning of the flexgroup's
+		 * inode tables.  Block allocation decisions will do
+		 * something similar, although regular files will
+		 * start at 2nd block group of the flexgroup.  See
+		 * ext4_ext_find_goal() and ext4_find_near().
+		 */
+		grp *= flex_size;
+		for (i = 0; i < flex_size; i++) {
+			if (grp+i >= real_ngroups)
+				break;
+			desc = ext4_get_group_desc(sb, grp+i, NULL);
+			if (desc && ext4_free_inodes_count(sb, desc)) {
+				*group = grp+i;
+				return 0;
+			}
+		}
+		goto fallback;
+	}
+
+	max_dirs = ndirs / ngroups + inodes_per_group*flex_size / 16;
+	min_inodes = avefreei - inodes_per_group*flex_size / 4;
+	if (min_inodes < 1)
+		min_inodes = 1;
+	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
+	if (min_clusters < 0)
+		min_clusters = 0;
+
+	/*
+	 * Start looking in the flex group where we last allocated an
+	 * inode for this parent directory
+	 */
+	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
+		parent_group = EXT4_I(parent)->i_last_alloc_group;
+		if (flex_size > 1)
+			parent_group >>= sbi->s_log_groups_per_flex;
+	}
+
+	for (i = 0; i < ngroups; i++) {
+		grp = (parent_group + i) % ngroups;
+		get_orlov_stats(sb, grp, flex_size, &stats);
+		if (stats.used_dirs >= max_dirs)
+			continue;
+		if (stats.free_inodes < min_inodes)
+			continue;
+		if (stats.free_clusters < min_clusters)
+			continue;
+		goto found_flex_bg;
+	}
+
+fallback:
+	ngroups = real_ngroups;
+	avefreei = freei / ngroups;
+fallback_retry:
+	parent_group = EXT4_I(parent)->i_block_group;
+	for (i = 0; i < ngroups; i++) {
+		grp = (parent_group + i) % ngroups;
+		desc = ext4_get_group_desc(sb, grp, NULL);
+		if (desc) {
+			grp_free = ext4_free_inodes_count(sb, desc);
+			if (grp_free && grp_free >= avefreei) {
+				*group = grp;
+				return 0;
+			}
+		}
+	}
+
+	if (avefreei) {
+		/*
+		 * The free-inodes counter is approximate, and for really small
+		 * filesystems the above test can fail to find any blockgroups
+		 */
+		avefreei = 0;
+		goto fallback_retry;
+	}
+
+	return -1;
+}
+
+static int find_group_other(struct super_block *sb, struct inode *parent,
+			    ext4_group_t *group, umode_t mode)
+{
+	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
+	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
+	struct ext4_group_desc *desc;
+	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
+
+	/*
+	 * Try to place the inode is the same flex group as its
+	 * parent.  If we can't find space, use the Orlov algorithm to
+	 * find another flex group, and store that information in the
+	 * parent directory's inode information so that use that flex
+	 * group for future allocations.
+	 */
+	if (flex_size > 1) {
+		int retry = 0;
+
+	try_again:
+		parent_group &= ~(flex_size-1);
+		last = parent_group + flex_size;
+		if (last > ngroups)
+			last = ngroups;
+		for  (i = parent_group; i < last; i++) {
+			desc = ext4_get_group_desc(sb, i, NULL);
+			if (desc && ext4_free_inodes_count(sb, desc)) {
+				*group = i;
+				return 0;
+			}
+		}
+		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
+			retry = 1;
+			parent_group = EXT4_I(parent)->i_last_alloc_group;
+			goto try_again;
+		}
+		/*
+		 * If this didn't work, use the Orlov search algorithm
+		 * to find a new flex group; we pass in the mode to
+		 * avoid the topdir algorithms.
+		 */
+		*group = parent_group + flex_size;
+		if (*group > ngroups)
+			*group = 0;
+		return find_group_orlov(sb, parent, group, mode, NULL);
+	}
+
+	/*
+	 * Try to place the inode in its parent directory
+	 */
+	*group = parent_group;
+	desc = ext4_get_group_desc(sb, *group, NULL);
+	if (desc && ext4_free_inodes_count(sb, desc) &&
+	    ext4_free_group_clusters(sb, desc))
+		return 0;
+
+	/*
+	 * We're going to place this inode in a different blockgroup from its
+	 * parent.  We want to cause files in a common directory to all land in
+	 * the same blockgroup.  But we want files which are in a different
+	 * directory which shares a blockgroup with our parent to land in a
+	 * different blockgroup.
+	 *
+	 * So add our directory's i_ino into the starting point for the hash.
+	 */
+	*group = (*group + parent->i_ino) % ngroups;
+
+	/*
+	 * Use a quadratic hash to find a group with a free inode and some free
+	 * blocks.
+	 */
+	for (i = 1; i < ngroups; i <<= 1) {
+		*group += i;
+		if (*group >= ngroups)
+			*group -= ngroups;
+		desc = ext4_get_group_desc(sb, *group, NULL);
+		if (desc && ext4_free_inodes_count(sb, desc) &&
+		    ext4_free_group_clusters(sb, desc))
+			return 0;
+	}
+
+	/*
+	 * That failed: try linear search for a free inode, even if that group
+	 * has no free blocks.
+	 */
+	*group = parent_group;
+	for (i = 0; i < ngroups; i++) {
+		if (++*group >= ngroups)
+			*group = 0;
+		desc = ext4_get_group_desc(sb, *group, NULL);
+		if (desc && ext4_free_inodes_count(sb, desc))
+			return 0;
+	}
+
+	return -1;
+}
+
+/*
+ * In no journal mode, if an inode has recently been deleted, we want
+ * to avoid reusing it until we're reasonably sure the inode table
+ * block has been written back to disk.  (Yes, these values are
+ * somewhat arbitrary...)
+ */
+#define RECENTCY_MIN	60
+#define RECENTCY_DIRTY	300
+
+static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
+{
+	struct ext4_group_desc	*gdp;
+	struct ext4_inode	*raw_inode;
+	struct buffer_head	*bh;
+	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
+	int offset, ret = 0;
+	int recentcy = RECENTCY_MIN;
+	u32 dtime, now;
+
+	gdp = ext4_get_group_desc(sb, group, NULL);
+	if (unlikely(!gdp))
+		return 0;
+
+	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
+		       (ino / inodes_per_block));
+	if (!bh || !buffer_uptodate(bh))
+		/*
+		 * If the block is not in the buffer cache, then it
+		 * must have been written out, or, most unlikely, is
+		 * being migrated - false failure should be OK here.
+		 */
+		goto out;
+
+	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
+	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
+
+	/* i_dtime is only 32 bits on disk, but we only care about relative
+	 * times in the range of a few minutes (i.e. long enough to sync a
+	 * recently-deleted inode to disk), so using the low 32 bits of the
+	 * clock (a 68 year range) is enough, see time_before32() */
+	dtime = le32_to_cpu(raw_inode->i_dtime);
+	now = ktime_get_real_seconds();
+	if (buffer_dirty(bh))
+		recentcy += RECENTCY_DIRTY;
+
+	if (dtime && time_before32(dtime, now) &&
+	    time_before32(now, dtime + recentcy))
+		ret = 1;
+out:
+	brelse(bh);
+	return ret;
+}
+
+static int find_inode_bit(struct super_block *sb, ext4_group_t group,
+			  struct buffer_head *bitmap, unsigned long *ino)
+{
+	bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL;
+	unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb);
+
+next:
+	*ino = ext4_find_next_zero_bit((unsigned long *)
+				       bitmap->b_data,
+				       EXT4_INODES_PER_GROUP(sb), *ino);
+	if (*ino >= EXT4_INODES_PER_GROUP(sb))
+		goto not_found;
+
+	if (check_recently_deleted && recently_deleted(sb, group, *ino)) {
+		recently_deleted_ino = *ino;
+		*ino = *ino + 1;
+		if (*ino < EXT4_INODES_PER_GROUP(sb))
+			goto next;
+		goto not_found;
+	}
+	return 1;
+not_found:
+	if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb))
+		return 0;
+	/*
+	 * Not reusing recently deleted inodes is mostly a preference. We don't
+	 * want to report ENOSPC or skew allocation patterns because of that.
+	 * So return even recently deleted inode if we could find better in the
+	 * given range.
+	 */
+	*ino = recently_deleted_ino;
+	return 1;
+}
+
+int ext4_mark_inode_used(struct super_block *sb, int ino)
+{
+	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
+	struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL;
+	struct ext4_group_desc *gdp;
+	ext4_group_t group;
+	int bit;
+	int err;
+
+	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
+		return -EFSCORRUPTED;
+
+	group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
+	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
+	inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
+	if (IS_ERR(inode_bitmap_bh))
+		return PTR_ERR(inode_bitmap_bh);
+
+	if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) {
+		err = 0;
+		goto out;
+	}
+
+	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
+	if (!gdp) {
+		err = -EINVAL;
+		goto out;
+	}
+
+	ext4_set_bit(bit, inode_bitmap_bh->b_data);
+
+	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
+	err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh);
+	if (err) {
+		ext4_std_error(sb, err);
+		goto out;
+	}
+	err = sync_dirty_buffer(inode_bitmap_bh);
+	if (err) {
+		ext4_std_error(sb, err);
+		goto out;
+	}
+
+	/* We may have to initialize the block bitmap if it isn't already */
+	if (ext4_has_group_desc_csum(sb) &&
+	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
+		struct buffer_head *block_bitmap_bh;
+
+		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
+		if (IS_ERR(block_bitmap_bh)) {
+			err = PTR_ERR(block_bitmap_bh);
+			goto out;
+		}
+
+		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
+		err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh);
+		sync_dirty_buffer(block_bitmap_bh);
+
+		/* recheck and clear flag under lock if we still need to */
+		ext4_lock_group(sb, group);
+		if (ext4_has_group_desc_csum(sb) &&
+		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
+			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
+			ext4_free_group_clusters_set(sb, gdp,
+				ext4_free_clusters_after_init(sb, group, gdp));
+			ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh);
+			ext4_group_desc_csum_set(sb, group, gdp);
+		}
+		ext4_unlock_group(sb, group);
+		brelse(block_bitmap_bh);
+
+		if (err) {
+			ext4_std_error(sb, err);
+			goto out;
+		}
+	}
+
+	/* Update the relevant bg descriptor fields */
+	if (ext4_has_group_desc_csum(sb)) {
+		int free;
+
+		ext4_lock_group(sb, group); /* while we modify the bg desc */
+		free = EXT4_INODES_PER_GROUP(sb) -
+			ext4_itable_unused_count(sb, gdp);
+		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
+			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
+			free = 0;
+		}
+
+		/*
+		 * Check the relative inode number against the last used
+		 * relative inode number in this group. if it is greater
+		 * we need to update the bg_itable_unused count
+		 */
+		if (bit >= free)
+			ext4_itable_unused_set(sb, gdp,
+					(EXT4_INODES_PER_GROUP(sb) - bit - 1));
+	} else {
+		ext4_lock_group(sb, group);
+	}
+
+	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
+	if (ext4_has_group_desc_csum(sb)) {
+		ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh);
+		ext4_group_desc_csum_set(sb, group, gdp);
+	}
+
+	ext4_unlock_group(sb, group);
+	err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh);
+	sync_dirty_buffer(group_desc_bh);
+out:
+	brelse(inode_bitmap_bh);
+	return err;
+}
+
+static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode,
+					    bool encrypt)
+{
+	struct super_block *sb = dir->i_sb;
+	int nblocks = 0;
+#ifdef CONFIG_EXT4_FS_POSIX_ACL
+	struct posix_acl *p = get_inode_acl(dir, ACL_TYPE_DEFAULT);
+
+	if (IS_ERR(p))
+		return PTR_ERR(p);
+	if (p) {
+		int acl_size = p->a_count * sizeof(ext4_acl_entry);
+
+		nblocks += (S_ISDIR(mode) ? 2 : 1) *
+			__ext4_xattr_set_credits(sb, NULL /* inode */,
+						 NULL /* block_bh */, acl_size,
+						 true /* is_create */);
+		posix_acl_release(p);
+	}
+#endif
+
+#ifdef CONFIG_SECURITY
+	{
+		int num_security_xattrs = 1;
+
+#ifdef CONFIG_INTEGRITY
+		num_security_xattrs++;
+#endif
+		/*
+		 * We assume that security xattrs are never more than 1k.
+		 * In practice they are under 128 bytes.
+		 */
+		nblocks += num_security_xattrs *
+			__ext4_xattr_set_credits(sb, NULL /* inode */,
+						 NULL /* block_bh */, 1024,
+						 true /* is_create */);
+	}
+#endif
+	if (encrypt)
+		nblocks += __ext4_xattr_set_credits(sb,
+						    NULL /* inode */,
+						    NULL /* block_bh */,
+						    FSCRYPT_SET_CONTEXT_MAX_SIZE,
+						    true /* is_create */);
+	return nblocks;
+}
+
+/*
+ * There are two policies for allocating an inode.  If the new inode is
+ * a directory, then a forward search is made for a block group with both
+ * free space and a low directory-to-inode ratio; if that fails, then of
+ * the groups with above-average free space, that group with the fewest
+ * directories already is chosen.
+ *
+ * For other inodes, search forward from the parent directory's block
+ * group to find a free inode.
+ */
+struct inode *__ext4_new_inode(struct mnt_idmap *idmap,
+			       handle_t *handle, struct inode *dir,
+			       umode_t mode, const struct qstr *qstr,
+			       __u32 goal, uid_t *owner, __u32 i_flags,
+			       int handle_type, unsigned int line_no,
+			       int nblocks)
+{
+	struct super_block *sb;
+	struct buffer_head *inode_bitmap_bh = NULL;
+	struct buffer_head *group_desc_bh;
+	ext4_group_t ngroups, group = 0;
+	unsigned long ino = 0;
+	struct inode *inode;
+	struct ext4_group_desc *gdp = NULL;
+	struct ext4_inode_info *ei;
+	struct ext4_sb_info *sbi;
+	int ret2, err;
+	struct inode *ret;
+	ext4_group_t i;
+	ext4_group_t flex_group;
+	struct ext4_group_info *grp = NULL;
+	bool encrypt = false;
+
+	/* Cannot create files in a deleted directory */
+	if (!dir || !dir->i_nlink)
+		return ERR_PTR(-EPERM);
+
+	sb = dir->i_sb;
+	sbi = EXT4_SB(sb);
+
+	ret2 = ext4_emergency_state(sb);
+	if (unlikely(ret2))
+		return ERR_PTR(ret2);
+
+	ngroups = ext4_get_groups_count(sb);
+	trace_ext4_request_inode(dir, mode);
+	inode = new_inode(sb);
+	if (!inode)
+		return ERR_PTR(-ENOMEM);
+	ei = EXT4_I(inode);
+
+	/*
+	 * Initialize owners and quota early so that we don't have to account
+	 * for quota initialization worst case in standard inode creating
+	 * transaction
+	 */
+	if (owner) {
+		inode->i_mode = mode;
+		i_uid_write(inode, owner[0]);
+		i_gid_write(inode, owner[1]);
+	} else if (test_opt(sb, GRPID)) {
+		inode->i_mode = mode;
+		inode_fsuid_set(inode, idmap);
+		inode->i_gid = dir->i_gid;
+	} else
+		inode_init_owner(idmap, inode, dir, mode);
+
+	if (ext4_has_feature_project(sb) &&
+	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
+		ei->i_projid = EXT4_I(dir)->i_projid;
+	else
+		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
+
+	if (!(i_flags & EXT4_EA_INODE_FL)) {
+		err = fscrypt_prepare_new_inode(dir, inode, &encrypt);
+		if (err)
+			goto out;
+	}
+
+	err = dquot_initialize(inode);
+	if (err)
+		goto out;
+
+	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
+		ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt);
+		if (ret2 < 0) {
+			err = ret2;
+			goto out;
+		}
+		nblocks += ret2;
+	}
+
+	if (!goal)
+		goal = sbi->s_inode_goal;
+
+	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
+		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
+		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
+		ret2 = 0;
+		goto got_group;
+	}
+
+	if (S_ISDIR(mode))
+		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
+	else
+		ret2 = find_group_other(sb, dir, &group, mode);
+
+got_group:
+	EXT4_I(dir)->i_last_alloc_group = group;
+	err = -ENOSPC;
+	if (ret2 == -1)
+		goto out;
+
+	/*
+	 * Normally we will only go through one pass of this loop,
+	 * unless we get unlucky and it turns out the group we selected
+	 * had its last inode grabbed by someone else.
+	 */
+	for (i = 0; i < ngroups; i++, ino = 0) {
+		err = -EIO;
+
+		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
+		if (!gdp)
+			goto out;
+
+		/*
+		 * Check free inodes count before loading bitmap.
+		 */
+		if (ext4_free_inodes_count(sb, gdp) == 0)
+			goto next_group;
+
+		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
+			grp = ext4_get_group_info(sb, group);
+			/*
+			 * Skip groups with already-known suspicious inode
+			 * tables
+			 */
+			if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
+				goto next_group;
+		}
+
+		brelse(inode_bitmap_bh);
+		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
+		/* Skip groups with suspicious inode tables */
+		if (IS_ERR(inode_bitmap_bh)) {
+			inode_bitmap_bh = NULL;
+			goto next_group;
+		}
+		if (!(sbi->s_mount_state & EXT4_FC_REPLAY) &&
+		    EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
+			goto next_group;
+
+		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
+		if (!ret2)
+			goto next_group;
+
+		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
+			ext4_error(sb, "reserved inode found cleared - "
+				   "inode=%lu", ino + 1);
+			ext4_mark_group_bitmap_corrupted(sb, group,
+					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
+			goto next_group;
+		}
+
+		if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) {
+			BUG_ON(nblocks <= 0);
+			handle = __ext4_journal_start_sb(NULL, dir->i_sb,
+				 line_no, handle_type, nblocks, 0,
+				 ext4_trans_default_revoke_credits(sb));
+			if (IS_ERR(handle)) {
+				err = PTR_ERR(handle);
+				ext4_std_error(sb, err);
+				goto out;
+			}
+		}
+		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
+		err = ext4_journal_get_write_access(handle, sb, inode_bitmap_bh,
+						    EXT4_JTR_NONE);
+		if (err) {
+			ext4_std_error(sb, err);
+			goto out;
+		}
+		ext4_lock_group(sb, group);
+		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
+		if (ret2) {
+			/* Someone already took the bit. Repeat the search
+			 * with lock held.
+			 */
+			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
+			if (ret2) {
+				ext4_set_bit(ino, inode_bitmap_bh->b_data);
+				ret2 = 0;
+			} else {
+				ret2 = 1; /* we didn't grab the inode */
+			}
+		}
+		ext4_unlock_group(sb, group);
+		ino++;		/* the inode bitmap is zero-based */
+		if (!ret2)
+			goto got; /* we grabbed the inode! */
+
+next_group:
+		if (++group == ngroups)
+			group = 0;
+	}
+	err = -ENOSPC;
+	goto out;
+
+got:
+	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
+	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
+	if (err) {
+		ext4_std_error(sb, err);
+		goto out;
+	}
+
+	BUFFER_TRACE(group_desc_bh, "get_write_access");
+	err = ext4_journal_get_write_access(handle, sb, group_desc_bh,
+					    EXT4_JTR_NONE);
+	if (err) {
+		ext4_std_error(sb, err);
+		goto out;
+	}
+
+	/* We may have to initialize the block bitmap if it isn't already */
+	if (ext4_has_group_desc_csum(sb) &&
+	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
+		struct buffer_head *block_bitmap_bh;
+
+		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
+		if (IS_ERR(block_bitmap_bh)) {
+			err = PTR_ERR(block_bitmap_bh);
+			goto out;
+		}
+		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
+		err = ext4_journal_get_write_access(handle, sb, block_bitmap_bh,
+						    EXT4_JTR_NONE);
+		if (err) {
+			brelse(block_bitmap_bh);
+			ext4_std_error(sb, err);
+			goto out;
+		}
+
+		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
+		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
+
+		/* recheck and clear flag under lock if we still need to */
+		ext4_lock_group(sb, group);
+		if (ext4_has_group_desc_csum(sb) &&
+		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
+			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
+			ext4_free_group_clusters_set(sb, gdp,
+				ext4_free_clusters_after_init(sb, group, gdp));
+			ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh);
+			ext4_group_desc_csum_set(sb, group, gdp);
+		}
+		ext4_unlock_group(sb, group);
+		brelse(block_bitmap_bh);
+
+		if (err) {
+			ext4_std_error(sb, err);
+			goto out;
+		}
+	}
+
+	/* Update the relevant bg descriptor fields */
+	if (ext4_has_group_desc_csum(sb)) {
+		int free;
+		struct ext4_group_info *grp = NULL;
+
+		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
+			grp = ext4_get_group_info(sb, group);
+			if (!grp) {
+				err = -EFSCORRUPTED;
+				goto out;
+			}
+			down_read(&grp->alloc_sem); /*
+						     * protect vs itable
+						     * lazyinit
+						     */
+		}
+		ext4_lock_group(sb, group); /* while we modify the bg desc */
+		free = EXT4_INODES_PER_GROUP(sb) -
+			ext4_itable_unused_count(sb, gdp);
+		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
+			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
+			free = 0;
+		}
+		/*
+		 * Check the relative inode number against the last used
+		 * relative inode number in this group. if it is greater
+		 * we need to update the bg_itable_unused count
+		 */
+		if (ino > free)
+			ext4_itable_unused_set(sb, gdp,
+					(EXT4_INODES_PER_GROUP(sb) - ino));
+		if (!(sbi->s_mount_state & EXT4_FC_REPLAY))
+			up_read(&grp->alloc_sem);
+	} else {
+		ext4_lock_group(sb, group);
+	}
+
+	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
+	if (S_ISDIR(mode)) {
+		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
+		if (sbi->s_log_groups_per_flex) {
+			ext4_group_t f = ext4_flex_group(sbi, group);
+
+			atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
+							f)->used_dirs);
+		}
+	}
+	if (ext4_has_group_desc_csum(sb)) {
+		ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh);
+		ext4_group_desc_csum_set(sb, group, gdp);
+	}
+	ext4_unlock_group(sb, group);
+
+	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
+	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
+	if (err) {
+		ext4_std_error(sb, err);
+		goto out;
+	}
+
+	percpu_counter_dec(&sbi->s_freeinodes_counter);
+	if (S_ISDIR(mode))
+		percpu_counter_inc(&sbi->s_dirs_counter);
+
+	if (sbi->s_log_groups_per_flex) {
+		flex_group = ext4_flex_group(sbi, group);
+		atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
+						flex_group)->free_inodes);
+	}
+
+	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
+	/* This is the optimal IO size (for stat), not the fs block size */
+	inode->i_blocks = 0;
+	simple_inode_init_ts(inode);
+	ei->i_crtime = inode_get_mtime(inode);
+
+	memset(ei->i_data, 0, sizeof(ei->i_data));
+	ei->i_dir_start_lookup = 0;
+	ei->i_disksize = 0;
+
+	/* Don't inherit extent flag from directory, amongst others. */
+	ei->i_flags =
+		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
+	ei->i_flags |= i_flags;
+	ei->i_file_acl = 0;
+	ei->i_dtime = 0;
+	ei->i_block_group = group;
+	ei->i_last_alloc_group = ~0;
+
+	ext4_set_inode_flags(inode, true);
+	if (IS_DIRSYNC(inode))
+		ext4_handle_sync(handle);
+	if (insert_inode_locked(inode) < 0) {
+		/*
+		 * Likely a bitmap corruption causing inode to be allocated
+		 * twice.
+		 */
+		err = -EIO;
+		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
+			   inode->i_ino);
+		ext4_mark_group_bitmap_corrupted(sb, group,
+					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
+		goto out;
+	}
+	inode->i_generation = get_random_u32();
+
+	/* Precompute checksum seed for inode metadata */
+	if (ext4_has_feature_metadata_csum(sb)) {
+		__u32 csum;
+		__le32 inum = cpu_to_le32(inode->i_ino);
+		__le32 gen = cpu_to_le32(inode->i_generation);
+		csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum,
+				   sizeof(inum));
+		ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen));
+	}
+
+	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
+	ext4_set_inode_state(inode, EXT4_STATE_NEW);
+
+	ei->i_extra_isize = sbi->s_want_extra_isize;
+	ei->i_inline_off = 0;
+	if (ext4_has_feature_inline_data(sb) &&
+	    (!(ei->i_flags & (EXT4_DAX_FL|EXT4_EA_INODE_FL)) || S_ISDIR(mode)))
+		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
+	ret = inode;
+	err = dquot_alloc_inode(inode);
+	if (err)
+		goto fail_drop;
+
+	/*
+	 * Since the encryption xattr will always be unique, create it first so
+	 * that it's less likely to end up in an external xattr block and
+	 * prevent its deduplication.
+	 */
+	if (encrypt) {
+		err = fscrypt_set_context(inode, handle);
+		if (err)
+			goto fail_free_drop;
+	}
+
+	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
+		err = ext4_init_acl(handle, inode, dir);
+		if (err)
+			goto fail_free_drop;
+
+		err = ext4_init_security(handle, inode, dir, qstr);
+		if (err)
+			goto fail_free_drop;
+	}
+
+	if (ext4_has_feature_extents(sb)) {
+		/* set extent flag only for directory, file and normal symlink*/
+		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
+			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
+			ext4_ext_tree_init(handle, inode);
+		}
+	}
+
+	ext4_set_inode_mapping_order(inode);
+
+	ext4_update_inode_fsync_trans(handle, inode, 1);
+
+	err = ext4_mark_inode_dirty(handle, inode);
+	if (err) {
+		ext4_std_error(sb, err);
+		goto fail_free_drop;
+	}
+
+	ext4_debug("allocating inode %lu\n", inode->i_ino);
+	trace_ext4_allocate_inode(inode, dir, mode);
+	brelse(inode_bitmap_bh);
+	return ret;
+
+fail_free_drop:
+	dquot_free_inode(inode);
+fail_drop:
+	clear_nlink(inode);
+	unlock_new_inode(inode);
+out:
+	dquot_drop(inode);
+	inode->i_flags |= S_NOQUOTA;
+	iput(inode);
+	brelse(inode_bitmap_bh);
+	return ERR_PTR(err);
+}
+
+/* Verify that we are loading a valid orphan from disk */
+struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
+{
+	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
+	ext4_group_t block_group;
+	int bit;
+	struct buffer_head *bitmap_bh = NULL;
+	struct inode *inode = NULL;
+	int err = -EFSCORRUPTED;
+
+	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
+		goto bad_orphan;
+
+	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
+	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
+	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
+	if (IS_ERR(bitmap_bh))
+		return ERR_CAST(bitmap_bh);
+
+	/* Having the inode bit set should be a 100% indicator that this
+	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
+	 * inodes that were being truncated, so we can't check i_nlink==0.
+	 */
+	if (!ext4_test_bit(bit, bitmap_bh->b_data))
+		goto bad_orphan;
+
+	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
+	if (IS_ERR(inode)) {
+		err = PTR_ERR(inode);
+		ext4_error_err(sb, -err,
+			       "couldn't read orphan inode %lu (err %d)",
+			       ino, err);
+		brelse(bitmap_bh);
+		return inode;
+	}
+
+	/*
+	 * If the orphans has i_nlinks > 0 then it should be able to
+	 * be truncated, otherwise it won't be removed from the orphan
+	 * list during processing and an infinite loop will result.
+	 * Similarly, it must not be a bad inode.
+	 */
+	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
+	    is_bad_inode(inode))
+		goto bad_orphan;
+
+	if (NEXT_ORPHAN(inode) > max_ino)
+		goto bad_orphan;
+	brelse(bitmap_bh);
+	return inode;
+
+bad_orphan:
+	ext4_error(sb, "bad orphan inode %lu", ino);
+	if (bitmap_bh)
+		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
+		       bit, (unsigned long long)bitmap_bh->b_blocknr,
+		       ext4_test_bit(bit, bitmap_bh->b_data));
+	if (inode) {
+		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
+		       is_bad_inode(inode));
+		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
+		       NEXT_ORPHAN(inode));
+		printk(KERN_ERR "max_ino=%lu\n", max_ino);
+		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
+		/* Avoid freeing blocks if we got a bad deleted inode */
+		if (inode->i_nlink == 0)
+			inode->i_blocks = 0;
+		iput(inode);
+	}
+	brelse(bitmap_bh);
+	return ERR_PTR(err);
+}
+
+unsigned long ext4_count_free_inodes(struct super_block *sb)
+{
+	unsigned long desc_count;
+	struct ext4_group_desc *gdp;
+	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
+#ifdef EXT4FS_DEBUG
+	struct ext4_super_block *es;
+	unsigned long bitmap_count, x;
+	struct buffer_head *bitmap_bh = NULL;
+
+	es = EXT4_SB(sb)->s_es;
+	desc_count = 0;
+	bitmap_count = 0;
+	gdp = NULL;
+	for (i = 0; i < ngroups; i++) {
+		gdp = ext4_get_group_desc(sb, i, NULL);
+		if (!gdp)
+			continue;
+		desc_count += ext4_free_inodes_count(sb, gdp);
+		brelse(bitmap_bh);
+		bitmap_bh = ext4_read_inode_bitmap(sb, i);
+		if (IS_ERR(bitmap_bh)) {
+			bitmap_bh = NULL;
+			continue;
+		}
+
+		x = ext4_count_free(bitmap_bh->b_data,
+				    EXT4_INODES_PER_GROUP(sb) / 8);
+		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
+			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
+		bitmap_count += x;
+	}
+	brelse(bitmap_bh);
+	printk(KERN_DEBUG "ext4_count_free_inodes: "
+	       "stored = %u, computed = %lu, %lu\n",
+	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
+	return desc_count;
+#else
+	desc_count = 0;
+	for (i = 0; i < ngroups; i++) {
+		gdp = ext4_get_group_desc(sb, i, NULL);
+		if (!gdp)
+			continue;
+		desc_count += ext4_free_inodes_count(sb, gdp);
+		cond_resched();
+	}
+	return desc_count;
+#endif
+}
+
+/* Called at mount-time, super-block is locked */
+unsigned long ext4_count_dirs(struct super_block * sb)
+{
+	unsigned long count = 0;
+	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
+
+	for (i = 0; i < ngroups; i++) {
+		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
+		if (!gdp)
+			continue;
+		count += ext4_used_dirs_count(sb, gdp);
+	}
+	return count;
+}
+
+/*
+ * Zeroes not yet zeroed inode table - just write zeroes through the whole
+ * inode table. Must be called without any spinlock held. The only place
+ * where it is called from on active part of filesystem is ext4lazyinit
+ * thread, so we do not need any special locks, however we have to prevent
+ * inode allocation from the current group, so we take alloc_sem lock, to
+ * block ext4_new_inode() until we are finished.
+ */
+int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
+				 int barrier)
+{
+	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	struct ext4_group_desc *gdp = NULL;
+	struct buffer_head *group_desc_bh;
+	handle_t *handle;
+	ext4_fsblk_t blk;
+	int num, ret = 0, used_blks = 0;
+	unsigned long used_inos = 0;
+
+	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
+	if (!gdp || !grp)
+		goto out;
+
+	/*
+	 * We do not need to lock this, because we are the only one
+	 * handling this flag.
+	 */
+	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
+		goto out;
+
+	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
+	if (IS_ERR(handle)) {
+		ret = PTR_ERR(handle);
+		goto out;
+	}
+
+	down_write(&grp->alloc_sem);
+	/*
+	 * If inode bitmap was already initialized there may be some
+	 * used inodes so we need to skip blocks with used inodes in
+	 * inode table.
+	 */
+	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
+		used_inos = EXT4_INODES_PER_GROUP(sb) -
+			    ext4_itable_unused_count(sb, gdp);
+		used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block);
+
+		/* Bogus inode unused count? */
+		if (used_blks < 0 || used_blks > sbi->s_itb_per_group) {
+			ext4_error(sb, "Something is wrong with group %u: "
+				   "used itable blocks: %d; "
+				   "itable unused count: %u",
+				   group, used_blks,
+				   ext4_itable_unused_count(sb, gdp));
+			ret = 1;
+			goto err_out;
+		}
+
+		used_inos += group * EXT4_INODES_PER_GROUP(sb);
+		/*
+		 * Are there some uninitialized inodes in the inode table
+		 * before the first normal inode?
+		 */
+		if ((used_blks != sbi->s_itb_per_group) &&
+		     (used_inos < EXT4_FIRST_INO(sb))) {
+			ext4_error(sb, "Something is wrong with group %u: "
+				   "itable unused count: %u; "
+				   "itables initialized count: %ld",
+				   group, ext4_itable_unused_count(sb, gdp),
+				   used_inos);
+			ret = 1;
+			goto err_out;
+		}
+	}
+
+	blk = ext4_inode_table(sb, gdp) + used_blks;
+	num = sbi->s_itb_per_group - used_blks;
+
+	BUFFER_TRACE(group_desc_bh, "get_write_access");
+	ret = ext4_journal_get_write_access(handle, sb, group_desc_bh,
+					    EXT4_JTR_NONE);
+	if (ret)
+		goto err_out;
+
+	/*
+	 * Skip zeroout if the inode table is full. But we set the ZEROED
+	 * flag anyway, because obviously, when it is full it does not need
+	 * further zeroing.
+	 */
+	if (unlikely(num == 0))
+		goto skip_zeroout;
+
+	ext4_debug("going to zero out inode table in group %d\n",
+		   group);
+	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
+	if (ret < 0)
+		goto err_out;
+	if (barrier)
+		blkdev_issue_flush(sb->s_bdev);
+
+skip_zeroout:
+	ext4_lock_group(sb, group);
+	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
+	ext4_group_desc_csum_set(sb, group, gdp);
+	ext4_unlock_group(sb, group);
+
+	BUFFER_TRACE(group_desc_bh,
+		     "call ext4_handle_dirty_metadata");
+	ret = ext4_handle_dirty_metadata(handle, NULL,
+					 group_desc_bh);
+
+err_out:
+	up_write(&grp->alloc_sem);
+	ext4_journal_stop(handle);
+out:
+	return ret;
+}